헬라어 문장 내 검색 Language

Ἀπειλήφθωσαν γὰρ αἱ ΑΕ, ΕΒ, ΓΕ, ΕΔ ἴσαι ἀλλήλαισ, καὶ διήχθω τισ διὰ τοῦ Ε, ὡσ ἔτυχεν, ἡ ΗΕΘ, καὶ ἐπεζεύχθωσαν αἱ ΑΔ, ΓΒ, καὶ ἔτι ἀπὸ τυχόντοσ τοῦ Ζ ἐπεζεύχθωσαν αἱ ΖΑ, ΖΗ, ΖΔ, ΖΓ, ΖΘ, ΖΒ.
(유클리드, Elements, book 11, type Prop34)
καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΕ τῇ ΕΒ, κοινὴ δὲ καὶ πρὸσ ὀρθὰσ ἡ ΖΕ, βάσισ ἄρα ἡ ΖΑ βάσει τῇ ΖΒ ἐστιν ἴση.
(유클리드, Elements, book 11, type Prop41)
καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΔ τῇ ΓΒ, ἔστι δὲ καὶ ἡ ΖΑ τῇ ΖΒ ἴση, δύο δὴ αἱ ΖΑ, ΑΔ δυσὶ ταῖσ ΖΒ, ΒΓ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ·
(유클리드, Elements, book 11, type Prop43)
καὶ ἐπεὶ πάλιν ἐδείχθη ἡ ΑΗ τῇ ΒΘ ἴση, ἀλλὰ μὴν καὶ ἡ ΖΑ τῇ ΖΒ ἴση, δύο δὴ αἱ ΖΑ, ΑΗ δυσὶ ταῖσ ΖΒ, ΒΘ ἴσαι εἰσίν.
(유클리드, Elements, book 11, type Prop46)
ἡ ΗΘ ἄρα ὀρθή ἐστι πρὸσ τὴν ΖΑ·
(유클리드, Elements, book 11, type Prop194)
ὥστε καὶ ἡ ΖΑ ὀρθή ἐστι πρὸσ τὴν ΘΗ.
(유클리드, Elements, book 11, type Prop195)
ἡ ΖΑ ἄρα τῷ διὰ τῶν ΕΔ, ΗΘ ἐπιπέδῳ πρὸσ ὀρθάσ ἐστιν.
(유클리드, Elements, book 11, type Prop199)
καὶ ἐπεὶ ἴση ἐστὶν ἡ ΖΑ τῇ ΖΒ, καὶ κάθετοσ ἡ ΖΘ, ἴση ἄρα καὶ ἡ ὑπὸ ΑΖΚ γωνία τῇ ὑπὸ ΚΖΒ.
(유클리드, Elements, book 13, type Prop228)
ἀνάλογον ἄρα ἐστὶν ὡσ ἡ ΛΓ πρὸσ ΓΑ, οὕτωσ ἡ ΜΖ πρὸσ ΖΑ·
(유클리드, Elements, book 13, type Prop277)
ὡσ ἄρα ἡ τῆσ ΛΓ διπλῆ πρὸσ τὴν ΓΑ, οὕτωσ ἡ τῆσ ΜΖ διπλῆ πρὸσ τὴν ΖΑ.
(유클리드, Elements, book 13, type Prop279)
ὡσ δὲ ἡ τῆσ ΜΖ διπλῆ πρὸσ τὴν ΖΑ, οὕτωσ ἡ ΜΖ πρὸσ τὴν ἡμίσειαν τῆσ ΖΑ·
(유클리드, Elements, book 13, type Prop280)
καὶ ὡσ ἄρα ἡ τῆσ ΛΓ διπλῆ πρὸσ τὴν ΓΑ, οὕτωσ ἡ ΜΖ πρὸσ τὴν ἡμίσειαν τῆσ ΖΑ.
(유클리드, Elements, book 13, type Prop281)
ὡσ ἄρα ἡ τῆσ ΛΓ διπλῆ πρὸσ τὴν ἡμίσειαν τῆσ ΓΑ, οὕτωσ ἡ ΜΖ πρὸσ τὸ τέταρτον τῆσ ΖΑ.
(유클리드, Elements, book 13, type Prop283)
καί ἐστι τῆσ μὲν ΛΓ διπλῆ ἡ ΔΓ, τῆσ δὲ ΓΑ ἡμίσεια ἡ ΓΜ, τῆσ δὲ ΖΑ τέταρτον μέροσ ἡ ΖΚ·
(유클리드, Elements, book 13, type Prop284)
Ἔστω γὰρ πεντάγωνον ἰσόπλευρον καὶ ἰσογώνιον τὸ ΑΒΓΔΕ, καὶ περιγεγράφθω περὶ αὐτὸ κύκλοσ ὁ ΑΒΓ ΔΕ, καὶ εἰλήφθω αὐτοῦ τὸ κέντρον τὸ Ζ, καὶ ἐπεζεύχθωσαν αἱ ΖΑ, ΖΒ, ΖΓ, ΖΔ, ΖΕ.
(유클리드, Elements, book 13, type Prop699)

SEARCH

MENU NAVIGATION