헬라어 문장 내 검색 Language

Ἤχθω γὰρ διὰ τοῦ Γ τῇ ΔΑ παράλληλοσ ἡ ΓΕ καὶ διαχθεῖσα ἡ ΒΑ συμπιπτέτω αὐτῇ κατὰ τὸ Ε.
(유클리드, Elements, book 6, type Prop45)
ἔστιν ἄρα ὡσ ἡ ΒΔ τοῦ ΑΒΔ τριγώνου ὑποτείνουσα τὴν ὑπὸ ΒΑΔ πρὸσ τὴν ΔΑ τοῦ ΑΔΓ τριγώνου ὑποτείνουσαν τὴν πρὸσ τῷ Γ ἴσην τῇ ὑπὸ ΒΑΔ, οὕτωσ αὐτὴ ἡ ΑΔ τοῦ ΑΒΔ τριγώνου ὑποτείνουσα τὴν πρὸσ τῷ Β γωνίαν πρὸσ τὴν ΔΓ ὑποτείνουσαν τὴν ὑπὸ ΔΑΓ τοῦ ΑΔΓ τριγώνου ἴσην τῇ πρὸσ τῷ Β, καὶ ἔτι ἡ ΒΑ πρὸσ τὴν ΑΓ ὑποτείνουσαι τὰσ ὀρθάσ·
(유클리드, Elements, book 6, type Prop188)
Ἐπεὶ οὖν τριγώνου τοῦ ΑΒΓ παρὰ μίαν τῶν πλευρῶν τὴν ΒΓ ἦκται ἡ ΖΔ, ἀνάλογον ἄρα ἐστὶν ὡσ ἡ ΓΔ πρὸσ τὴν ΔΑ, οὕτωσ ἡ ΒΖ πρὸσ τὴν ΖΑ.
(유클리드, Elements, book 6, type Prop200)
διπλῆ δὲ ἡ ΓΔ τῆσ ΔΑ·
(유클리드, Elements, book 6, type Prop201)
πάλιν, ἐπεὶ τριγώνου τοῦ ΑΗΕ παρὰ μίαν τῶν πλευρῶν τὴν ΗΕ ἦκται ἡ ΖΔ, ἀνάλογον ἄρα ἐστὶν ὡσ ἡ ΕΔ πρὸσ τὴν ΔΑ, οὕτωσ ἡ ΗΖ πρὸσ τὴν ΖΑ.
(유클리드, Elements, book 6, type Prop213)
ἔστιν ἄρα ὡσ μὲν ἡ ΓΕ πρὸσ τὴν ΕΔ, οὕτωσ ἡ ΒΗ πρὸσ τὴν ΗΖ, ὡσ δὲ ἡ ΕΔ πρὸσ τὴν ΔΑ, οὕτωσ ἡ ΗΖ πρὸσ τὴν ΖΑ.
(유클리드, Elements, book 6, type Prop215)
καὶ ὡσ ἄρα ἡ ΒΕ πρὸσ τὴν ΕΑ, οὕτωσ ἡ ΔΗ πρὸσ τὴν ΗΑ, καὶ συνθέντι ἄρα ὡσ ἡ ΒΑ πρὸσ ΑΕ, οὕτωσ ἡ ΔΑ πρὸσ ΑΗ, καὶ ἐναλλὰξ ὡσ ἡ ΒΑ πρὸσ τὴν ΑΔ, οὕτωσ ἡ ΕΑ πρὸσ τὴν ΑΗ.
(유클리드, Elements, book 6, type Prop490)
Ἐπεὶ οὖν περὶ τὴν αὐτὴν διάμετρόν ἐστι τὸ ΑΒΓΔ τῷ ΚΗ, ἔστιν ἄρα ὡσ ἡ ΔΑ πρὸσ τὴν ΑΒ, οὕτωσ ἡ ΗΑ πρὸσ τὴν ΑΚ.
(유클리드, Elements, book 6, type Prop527)
ἔστι δὲ καὶ διὰ τὴν ὁμοιότητα τῶν ΑΒΓΔ, ΕΗ καὶ ὡσ ἡ ΔΑ πρὸσ τὴν ΑΒ, οὕτωσ ἡ ΗΑ πρὸσ τὴν ΑΕ·
(유클리드, Elements, book 6, type Prop528)
καί ἐστιν ὡσ ἡ ΒΔ πρὸσ τὴν ΒΓ, οὕτωσ τὸ ΔΑ πρὸσ τὸ ΑΓ.
(유클리드, Elements, book 10, type Prop 1405)
σύμμετρον ἄρα ἐστὶ τὸ ΔΑ τῷ ΑΓ.
(유클리드, Elements, book 10, type Prop 1406)
ῥητὸν δὲ τὸ ΔΑ·
(유클리드, Elements, book 10, type Prop 1407)
σύμμετρον ἄρα ἐστὶ τὸ ΔΑ τῷ ΑΓ.
(유클리드, Elements, book 10, type Prop 1416)
καί ἐστιν ὡσ τὸ ΔΑ πρὸσ τὸ ΑΓ, οὕτωσ ἡ ΔΒ πρὸσ τὴν ΒΓ.
(유클리드, Elements, book 10, type Prop 1417)
ἀσύμμετρον ἄρα [ἐστὶ] τὸ ΔΑ τῷ ΑΓ.
(유클리드, Elements, book 10, type Prop 1433)

SEARCH

MENU NAVIGATION