호흡부호 보기
강세부호 보기
장단부호 보기
작은 Iota 보기
모든 부호 보기
Εὑρεῖν τὴν ἐκ δύο ὀνομάτων πρώτην.? Ἐκκείσθωσαν δύο ἀριθμοὶ οἱ ΑΓ, ΓΒ, ὥστε τὸν συγκείμενον ἐξ αὐτῶν τὸν ΑΒ πρὸς μὲν τὸν ΒΓ λόγον ἔχειν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, πρὸς δὲ τὸν ΓΑ λόγον μὴ ἔχειν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, καὶ ἐκκείσθω τις ῥητὴ ἡ Δ, καὶ τῇ Δ σύμμετρος ἔστω μήκει ἡ ΕΖ. ῥητὴ ἄρα ἐστὶ καὶ ἡ ΕΖ. καὶ γεγονέτω ὡς ὁ ΒΑ ἀριθμὸς πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς ΖΗ. ὁ δὲ ΑΒ πρὸς τὸν ΑΓ λόγον ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν: καὶ τὸ ἀπὸ τῆς ΕΖ ἄρα πρὸς τὸ ἀπὸ τῆς ΖΗ λόγον ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν: ὥστε σύμμετρόν ἐστι τὸ ἀπὸ τῆς ΕΖ τῷ ἀπὸ τῆς ΖΗ. καί ἐστι ῥητὴ ἡ ΕΖ: ῥητὴ ἄρα καὶ ἡ ΖΗ. καὶ ἐπεὶ ὁ ΒΑ πρὸς τὸν ΑΓ λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, οὐδὲ τὸ ἀπὸ τῆς ΕΖ ἄρα πρὸς τὸ ἀπὸ τῆς ΖΗ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: ἀσύμμετρος ἄρα ἐστὶν ἡ ΕΖ τῇ ΖΗ μήκει. αἱ ΕΖ, ΖΗ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἐκ δύο ἄρα ὀνομάτων ἐστὶν ἡ ΕΗ. Λέγω, ὅτι καὶ πρώτη. Ἐπεὶ γάρ ἐστιν ὡς ὁ ΒΑ ἀριθμὸς πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς ΖΗ, μείζων δὲ ὁ ΒΑ τοῦ ΑΓ, μεῖζον ἄρα καὶ τὸ ἀπὸ τῆς ΕΖ τοῦ ἀπὸ τῆς ΖΗ. ἔστω οὖν τῷ ἀπὸ τῆς ΕΖ ἴσα τὰ ἀπὸ τῶν ΖΗ, Θ. καὶ ἐπεί ἐστιν ὡς ὁ ΒΑ πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς ΖΗ, ἀναστρέψαντι ἄρα ἐστὶν ὡς ὁ ΑΒ πρὸς τὸν ΒΓ, οὕτως τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς Θ. ὁ δὲ ΑΒ πρὸς τὸν ΒΓ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: καὶ τὸ ἀπὸ τῆς ΕΖ ἄρα πρὸς τὸ ἀπὸ τῆς Θ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. σύμμετρος ἄρα ἐστὶν ἡ ΕΖ τῇ Θ μήκει: ἡ ΕΖ ἄρα τῆς ΖΗ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ. καί εἰσι ῥηταὶ αἱ ΕΖ, ΖΗ, καὶ σύμμετρος ἡ ΕΖ τῇ Δ μήκει. Ἡ ΕΗ ἄρα ἐκ δύο ὀνομάτων ἐστὶ πρώτη: ὅπερ ἔδει δεῖξαι. Εὑρεῖν τὴν ἐκ δύο ὀνομάτων δευτέραν. Ἐκκείσθωσαν δύο ἀριθμοὶ οἱ ΑΓ, ΓΒ, ὥστε τὸν συγκείμενον ἐξ αὐτῶν τὸν ΑΒ πρὸς μὲν τὸν ΒΓ λόγον ἔχειν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, πρὸς δὲ τὸν ΑΓ λόγον μὴ ἔχειν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, καὶ ἐκκείσθω ῥητὴ ἡ Δ, καὶ τῇ Δ σύμμετρος ἔστω ἡ ΕΖ μήκει: ῥητὴ ἄρα ἐστὶν ἡ ΕΖ. γεγονέτω δὴ καὶ ὡς ὁ ΓΑ ἀριθμὸς πρὸς τὸν ΑΒ, οὕτως τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς ΖΗ: σύμμετρον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΕΖ τῷ ἀπὸ τῆς ΖΗ. ῥητὴ ἄρα ἐστὶ καὶ ἡ ΖΗ. καὶ ἐπεὶ ὁ ΓΑ ἀριθμὸς πρὸς τὸν ΑΒ λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, οὐδὲ τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς ΖΗ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. ἀσύμμετρος ἄρα ἐστὶν ἡ ΕΖ τῇ ΖΗ μήκει: αἱ ΕΖ, ΖΗ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἐκ δύο ἄρα ὀνομάτων ἐστὶν ἡ ΕΗ. Δεικτέον δή, ὅτι καὶ δευτέρα. Ἐπεὶ γὰρ ἀνάπαλίν ἐστιν ὡς ὁ ΒΑ ἀριθμὸς πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς ΗΖ πρὸς τὸ ἀπὸ τῆς ΖΕ, μείζων δὲ ὁ ΒΑ τοῦ ΑΓ, μεῖζον ἄρα [καὶ] τὸ ἀπὸ τῆς ΗΖ τοῦ ἀπὸ τῆς ΖΕ. ἔστω τῷ ἀπὸ τῆς ΗΖ ἴσα τὰ ἀπὸ τῶν ΕΖ, Θ: ἀναστρέψαντι ἄρα ἐστὶν ὡς ὁ ΑΒ πρὸς τὸν ΒΓ, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς Θ. ἀλλ ὁ ΑΒ πρὸς τὸν ΒΓ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: καὶ τὸ ἀπὸ τῆς ΖΗ ἄρα πρὸς τὸ ἀπὸ τῆς Θ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. σύμμετρος ἄρα ἐστὶν ἡ ΖΗ τῇ Θ μήκει: ὥστε ἡ ΖΗ τῆς ΖΕ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ. καί εἰσι ῥηταὶ αἱ ΖΗ, ΖΕ δυνάμει μόνον σύμμετροι, καὶ τὸ ΕΖ ἔλασσον ὄνομα τῇ ἐκκειμένῃ ῥητῇ σύμμετρόν ἐστι τῇ Δ μήκει. Ἡ ΕΗ ἄρα ἐκ δύο ὀνομάτων ἐστὶ δευτέρα: ὅπερ ἔδει δεῖξαι. Εὑρεῖν τὴν ἐκ δύο ὀνομάτων τρίτην. Ἐκκείσθωσαν δύο ἀριθμοὶ οἱ ΑΓ, ΓΒ, ὥστε τὸν συγκείμενον ἐξ αὐτῶν τὸν ΑΒ πρὸς μὲν τὸν ΒΓ λόγον ἔχειν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, πρὸς δὲ τὸν ΑΓ λόγον μὴ ἔχειν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. ἐκκείσθω δέ τις καὶ ἄλλος μὴ τετράγωνος ἀριθμὸς ὁ Δ, καὶ πρὸς ἑκάτερον τῶν ΒΑ, ΑΓ λόγον μὴ ἐχέτω, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: καὶ ἐκκείσθω τις ῥητὴ εὐθεῖα ἡ Ε, καὶ γεγονέτω ὡς ὁ Δ πρὸς τὸν ΑΒ, οὕτως τὸ ἀπὸ τῆς Ε πρὸς τὸ ἀπὸ τῆς ΖΗ: σύμμετρον ἄρα ἐστὶ τὸ ἀπὸ τῆς Ε τῷ ἀπὸ τῆς ΖΗ. καί ἐστι ῥητὴ ἡ Ε: ῥητὴ ἄρα ἐστὶ καὶ ἡ ΖΗ. καὶ ἐπεὶ ὁ Δ πρὸς τὸν ΑΒ λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, οὐδὲ τὸ ἀπὸ τῆς Ε πρὸς τὸ ἀπὸ τῆς ΖΗ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: ἀσύμμετρος ἄρα ἐστὶν ἡ Ε τῇ ΖΗ μήκει. γεγονέτω δὴ πάλιν ὡς ὁ ΒΑ ἀριθμὸς πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ: σύμμετρον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ τῆς ΗΘ. ῥητὴ δὲ ἡ ΖΗ: ῥητὴ ἄρα καὶ ἡ ΗΘ. καὶ ἐπεὶ ὁ ΒΑ πρὸς τὸν ΑΓ λόγον οὐκ ἔχει, ὅν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, οὐδὲ τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΘΗ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: ἀσύμμετρος ἄρα ἐστὶν ἡ ΖΗ τῇ ΗΘ μήκει. αἱ ΖΗ, ΗΘ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἡ ΖΘ ἄρα ἐκ δύο ὀνομάτων ἐστίν. Λέγω δή, ὅτι καὶ τρίτη. Ἐπεὶ γάρ ἐστιν ὡς ὁ Δ πρὸς τὸν ΑΒ, οὕτως τὸ ἀπὸ τῆς Ε πρὸς τὸ ἀπὸ τῆς ΖΗ, ὡς δὲ ὁ ΒΑ πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ, δι ἴσου ἄρα ἐστὶν ὡς ὁ Δ πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς Ε πρὸς τὸ ἀπὸ τῆς ΗΘ. ὁ δὲ Δ πρὸς τὸν ΑΓ λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: οὐδὲ τὸ ἀπὸ τῆς Ε ἄρα πρὸς τὸ ἀπὸ τῆς ΗΘ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: ἀσύμμετρος ἄρα ἐστὶν ἡ Ε τῇ ΗΘ μήκει. καὶ ἐπεί ἐστιν ὡς ὁ ΒΑ πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ, μεῖζον ἄρα τὸ ἀπὸ τῆς ΖΗ τοῦ ἀπὸ τῆς ΗΘ. ἔστω οὖν τῷ ἀπὸ τῆς ΖΗ ἴσα τὰ ἀπὸ τῶν ΗΘ, Κ: ἀναστρέψαντι ἄρα [ἐστὶν] ὡς ὁ ΑΒ πρὸς τὸν ΒΓ, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς Κ. ὁ δὲ ΑΒ πρὸς τὸν ΒΓ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: καὶ τὸ ἀπὸ τῆς ΖΗ ἄρα πρὸς τὸ ἀπὸ τῆς Κ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: σύμμετρος ἄρα [ἐστὶν] ἡ ΖΗ τῇ Κ μήκει. ἡ ΖΗ ἄρα τῆς ΗΘ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ. καί εἰσιν αἱ ΖΗ, ΗΘ ῥηταὶ δυνάμει μόνον σύμμετροι, καὶ οὐδετέρα αὐτῶν σύμμετρός ἐστι τῇ Ε μήκει. Ἡ ΖΘ ἄρα ἐκ δύο ὀνομάτων ἐστὶ τρίτη: ὅπερ ἔδει δεῖξαι. Εὑρεῖν τὴν ἐκ δύο ὀνομάτων τετάρτην. Ἐκκείσθωσαν δύο ἀριθμοὶ οἱ ΑΓ, ΓΒ, ὥστε τὸν ΑΒ πρὸς τὸν ΒΓ λόγον μὴ ἔχειν μήτε μὴν πρὸς τὸν ΑΓ, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. καὶ ἐκκείσθω ῥητὴ ἡ Δ, καὶ τῇ Δ σύμμετρος ἔστω μήκει ἡ ΕΖ: ῥητὴ ἄρα ἐστὶ καὶ ἡ ΕΖ. καὶ γεγονέτω ὡς ὁ ΒΑ ἀριθμὸς πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς ΖΗ: σύμμετρον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΕΖ τῷ ἀπὸ τῆς ΖΗ: ῥητὴ ἄρα ἐστὶ καὶ ἡ ΖΗ. καὶ ἐπεὶ ὁ ΒΑ πρὸς τὸν ΑΓ λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, οὐδὲ τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς ΖΗ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: ἀσύμμετρος ἄρα ἐστὶν ἡ ΕΖ τῇ ΖΗ μήκει. αἱ ΕΖ, ΖΗ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ὥστε ἡ ΕΗ ἐκ δύο ὀνομάτων ἐστίν. Λέγω δή, ὅτι καὶ τετάρτη. Ἐπεὶ γάρ ἐστιν ὡς ὁ ΒΑ πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς ΖΗ [μείζων δὲ ὁ ΒΑ τοῦ ΑΓ], μεῖζον ἄρα τὸ ἀπὸ τῆς ΕΖ τοῦ ἀπὸ τῆς ΖΗ. ἔστω οὖν τῷ ἀπὸ τῆς ΕΖ ἴσα τὰ ἀπὸ τῶν ΖΗ, Θ: ἀναστρέψαντι ἄρα ὡς ὁ ΑΒ ἀριθμὸς πρὸς τὸν ΒΓ, οὕτως τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς Θ. ὁ δὲ ΑΒ πρὸς τὸν ΒΓ λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: οὐδ ἄρα τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς Θ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. ἀσύμμετρος ἄρα ἐστὶν ἡ ΕΖ τῇ Θ μήκει: ἡ ΕΖ ἄρα τῆς ΗΖ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ. καί εἰσιν αἱ ΕΖ, ΖΗ ῥηταὶ δυνάμει μόνον σύμμετροι, καὶ ἡ ΕΖ τῇ Δ σύμμετρός ἐστι μήκει. Ἡ ΕΗ ἄρα ἐκ δύο ὀνομάτων ἐστὶ τετάρτη: ὅπερ ἔδει δεῖξαι. Εὑρεῖν τὴν ἐκ δύο ὀνομάτων πέμπτην. Ἐκκείσθωσαν δύο ἀριθμοὶ οἱ ΑΓ, ΓΒ, ὥστε τὸν ΑΒ πρὸς ἑκάτερον αὐτῶν λόγον μὴ ἔχειν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, καὶ ἐκκείσθω ῥητή τις εὐθεῖα ἡ Δ, καὶ τῇ Δ σύμμετρος ἔστω [μήκει] ἡ ΕΖ: ῥητὴ ἄρα ἡ ΕΖ. καὶ γεγονέτω ὡς ὁ ΓΑ πρὸς τὸν ΑΒ, οὕτως τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς ΖΗ. ὁ δὲ ΓΑ πρὸς τὸν ΑΒ λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: οὐδὲ τὸ ἀπὸ τῆς ΕΖ ἄρα πρὸς τὸ ἀπὸ τῆς ΖΗ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. αἱ ΕΖ, ΖΗ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἐκ δύο ἄρα ὀνομάτων ἐστὶν ἡ ΕΗ. Λέγω δή, ὅτι καὶ πέμπτη. Ἐπεὶ γάρ ἐστιν ὡς ὁ ΓΑ πρὸς τὸν ΑΒ, οὕτως τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς ΖΗ, ἀνάπαλιν ὡς ὁ ΒΑ πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΖΕ: μεῖζον ἄρα τὸ ἀπὸ τῆς ΗΖ τοῦ ἀπὸ τῆς ΖΕ. ἔστω οὖν τῷ ἀπὸ τῆς ΗΖ ἴσα τὰ ἀπὸ τῶν ΕΖ, Θ: ἀναστρέψαντι ἄρα ἐστὶν ὡς ὁ ΑΒ ἀριθμὸς πρὸς τὸν ΒΓ, οὕτως τὸ ἀπὸ τῆς ΗΖ πρὸς τὸ ἀπὸ τῆς Θ. ὁ δὲ ΑΒ πρὸς τὸν ΒΓ λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: οὐδ ἄρα τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς Θ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. ἀσύμμετρος ἄρα ἐστὶν ἡ ΖΗ τῇ Θ μήκει: ὥστε ἡ ΖΗ τῆς ΖΕ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ. καί εἰσιν αἱ ΗΖ, ΖΕ ῥηταὶ δυνάμει μόνον σύμμετροι καὶ τὸ ΕΖ ἔλαττον ὄνομα σύμμετρόν ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ Δ μήκει. Ἡ ΕΗ ἄρα ἐκ δύο ὀνομάτων ἐστὶ πέμπτη: ὅπερ ἔδει δεῖξαι. Εὑρεῖν τὴν ἐκ δύο ὀνομάτων ἕκτην. Ἐκκείσθωσαν δύο ἀριθμοὶ οἱ ΑΓ, ΓΒ, ὥστε τὸν ΑΒ πρὸς ἑκάτερον αὐτῶν λόγον μὴ ἔχειν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: ἔστω δὲ καὶ ἕτερος ἀριθμὸς ὁ Δ μὴ τετράγωνος ὢν μηδὲ πρὸς ἑκάτερον τῶν ΒΑ, ΑΓ λόγον ἔχων, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: καὶ ἐκκείσθω τις ῥητὴ εὐθεῖα ἡ Ε, καὶ γεγονέτω ὡς ὁ Δ πρὸς τὸν ΑΒ, οὕτως τὸ ἀπὸ τῆς Ε πρὸς τὸ ἀπὸ τῆς ΖΗ: σύμμετρον ἄρα τὸ ἀπὸ τῆς Ε τῷ ἀπὸ τῆς ΖΗ. καί ἐστι ῥητὴ ἡ Ε: ῥητὴ ἄρα καὶ ἡ ΖΗ. καὶ ἐπεὶ οὐκ ἔχει ὁ Δ πρὸς τὸν ΑΒ λόγον, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, οὐδὲ τὸ ἀπὸ τῆς Ε ἄρα πρὸς τὸ ἀπὸ τῆς ΖΗ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: ἀσύμμετρος ἄρα ἡ Ε τῇ ΖΗ μήκει. γεγονέτω δὴ πάλιν ὡς ὁ ΒΑ πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ. σύμμετρον ἄρα τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ τῆς ΘΗ. ῥητὸν ἄρα τὸ ἀπὸ τῆς ΘΗ: ῥητὴ ἄρα ἡ ΘΗ. καὶ ἐπεὶ ὁ ΒΑ πρὸς τὸν ΑΓ λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, οὐδὲ τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: ἀσύμμετρος ἄρα ἐστὶν ἡ ΖΗ τῇ ΗΘ μήκει. αἱ ΖΗ, ΗΘ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἐκ δύο ἄρα ὀνομάτων ἐστὶν ἡ ΖΘ. Δεικτέον δή, ὅτι καὶ ἕκτη. Ἐπεὶ γάρ ἐστιν ὡς ὁ Δ πρὸς τὸν ΑΒ, οὕτως τὸ ἀπὸ τῆς Ε πρὸς τὸ ἀπὸ τῆς ΖΗ, ἔστι δὲ καὶ ὡς ὁ ΒΑ πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ, δι ἴσου ἄρα ἐστὶν ὡς ὁ Δ πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς Ε πρὸς τὸ ἀπὸ τῆς ΗΘ. ὁ δὲ Δ πρὸς τὸν ΑΓ λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: οὐδὲ τὸ ἀπὸ τῆς Ε ἄρα πρὸς τὸ ἀπὸ τῆς ΗΘ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: ἀσύμμετρος ἄρα ἐστὶν ἡ Ε τῇ ΗΘ μήκει. ἐδείχθη δὲ καὶ τῇ ΖΗ ἀσύμμετρος: ἑκατέρα ἄρα τῶν ΖΗ, ΗΘ ἀσύμμετρός ἐστι τῇ Ε μήκει. καὶ ἐπεί ἐστιν ὡς ὁ ΒΑ πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ, μεῖζον ἄρα τὸ ἀπὸ τῆς ΖΗ τοῦ ἀπὸ τῆς ΗΘ. ἔστω οὖν τῷ ἀπὸ [τῆς] ΖΗ ἴσα τὰ ἀπὸ τῶν ΗΘ, Κ: ἀναστρέψαντι ἄρα ὡς ὁ ΑΒ πρὸς ΒΓ, οὕτως τὸ ἀπὸ ΖΗ πρὸς τὸ ἀπὸ τῆς Κ. ὁ δὲ ΑΒ πρὸς τὸν ΒΓ λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: ὥστε οὐδὲ τὸ ἀπὸ ΖΗ πρὸς τὸ ἀπὸ τῆς Κ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. ἀσύμμετρος ἄρα ἐστὶν ἡ ΖΗ τῇ Κ μήκει: ἡ ΖΗ ἄρα τῆς ΗΘ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ. καί εἰσιν αἱ ΖΗ, ΗΘ ῥηταὶ δυνάμει μόνον σύμμετροι, καὶ οὐδετέρα αὐτῶν σύμμετρός ἐστι μήκει τῇ ἐκκειμένῃ ῥητῇ τῇ Ε. Ἡ ΖΘ ἄρα ἐκ δύο ὀνομάτων ἐστὶν ἕκτη: ὅπερ ἔδει δεῖξαι. Λῆμμα Ἔστω δύο τετράγωνα τὰ ΑΒ, ΒΓ καὶ κείσθωσαν ὥστε ἐπ εὐθείας εἶναι τὴν ΔΒ τῇ ΒΕ: ἐπ εὐθείας ἄρα ἐστὶ καὶ ἡ ΖΒ τῇ ΒΗ. καὶ συμπεπληρώσθω τὸ ΑΓ παραλληλόγραμμον: λέγω, ὅτι τετράγωνόν ἐστι τὸ ΑΓ, καὶ ὅτι τῶν ΑΒ, ΒΓ μέσον ἀνάλογόν ἐστι τὸ ΔΗ, καὶ ἔτι τῶν ΑΓ, ΓΒ μέσον ἀνάλογόν ἐστι τὸ ΔΓ. Ἐπεὶ γὰρ ἴση ἐστὶν ἡ μὲν ΔΒ τῇ ΒΖ, ἡ δὲ ΒΕ τῇ ΒΗ, ὅλη ἄρα ἡ ΔΕ ὅλῃ τῇ ΖΗ ἐστιν ἴση. ἀλλ ἡ μὲν ΔΕ ἑκατέρᾳ τῶν ΑΘ, ΚΓ ἐστιν ἴση, ἡ δὲ ΖΗ ἑκατέρᾳ τῶν ΑΚ, ΘΓ ἐστιν ἴση: καὶ ἑκατέρα ἄρα τῶν ΑΘ, ΚΓ ἑκατέρᾳ τῶν ΑΚ, ΘΓ ἐστιν ἴση. ἰσόπλευρον ἄρα ἐστὶ τὸ ΑΓ παραλληλόγραμμον: ἔστι δὲ καὶ ὀρθογώνιον: τετράγωνον ἄρα ἐστὶ τὸ ΑΓ. Καὶ ἐπεί ἐστιν ὡς ἡ ΖΒ πρὸς τὴν ΒΗ, οὕτως ἡ ΔΒ πρὸς τὴν ΒΕ, ἀλλ ὡς μὲν ἡ ΖΒ πρὸς τὴν ΒΗ, οὕτως τὸ ΑΒ πρὸς τὸ ΔΗ, ὡς δὲ ἡ ΔΒ πρὸς τὴν ΒΕ, οὕτως τὸ ΔΗ πρὸς τὸ ΒΓ, καὶ ὡς ἄρα τὸ ΑΒ πρὸς τὸ ΔΗ, οὕτως τὸ ΔΗ πρὸς τὸ ΒΓ. τῶν ΑΒ, ΒΓ ἄρα μέσον ἀνάλογόν ἐστι τὸ ΔΗ. Λέγω δή, ὅτι καὶ τῶν ΑΓ, ΓΒ μέσον ἀνάλογόν [ἐστι] τὸ ΔΓ. Ἐπεὶ γάρ ἐστιν ὡς ἡ ΑΔ πρὸς τὴν ΔΚ, οὕτως ἡ ΚΗ πρὸς τὴν ΗΓ: ἴση γάρ [ἐστιν] ἑκατέρα ἑκατέρᾳ: καὶ συνθέντι ὡς ἡ ΑΚ πρὸς ΚΔ, οὕτως ἡ ΚΓ πρὸς ΓΗ, ἀλλ ὡς μὲν ἡ ΑΚ πρὸς ΚΔ, οὕτως τὸ ΑΓ πρὸς τὸ ΓΔ, ὡς δὲ ἡ ΚΓ πρὸς ΓΗ, οὕτως τὸ ΔΓ πρὸς ΓΒ, καὶ ὡς ἄρα τὸ ΑΓ πρὸς ΔΓ, οὕτως τὸ ΔΓ πρὸς τὸ ΒΓ. τῶν ΑΓ, ΓΒ ἄρα μέσον ἀνάλογόν ἐστι τὸ ΔΓ: ἃ προέκειτο δεῖξαι. Εἂν χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων πρώτης, ἡ τὸ χωρίον δυναμένη ἄλογός ἐστιν ἡ καλουμένη ἐκ δύο ὀνομάτων. Χωρίον γὰρ τὸ ΑΓ περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΒ καὶ τῆς ἐκ δύο ὀνομάτων πρώτης τῆς ΑΔ: λέγω, ὅτι ἡ τὸ ΑΓ χωρίον δυναμένη ἄλογός ἐστιν ἡ καλουμένη ἐκ δύο ὀνομάτων. Ἐπεὶ γὰρ ἐκ δύο ὀνομάτων ἐστὶ πρώτη ἡ ΑΔ, διῃρήσθω εἰς τὰ ὀνόματα κατὰ τὸ Ε, καὶ ἔστω τὸ μεῖζον ὄνομα τὸ ΑΕ. φανερὸν δή, ὅτι αἱ ΑΕ, ΕΔ ῥηταί εἰσι δυνάμει μόνον σύμμετροι, καὶ ἡ ΑΕ τῆς ΕΔ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ, καὶ ἡ ΑΕ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΑΒ μήκει. τετμήσθω δὴ ἡ ΕΔ δίχα κατὰ τὸ Ζ σημεῖον. καὶ ἐπεὶ ἡ ΑΕ τῆς ΕΔ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ, ἐὰν ἄρα τῷ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ἐλάσσονος, τουτέστι τῷ ἀπὸ τῆς ΕΖ, ἴσον παρὰ τὴν μείζονα τὴν ΑΕ παραβληθῇ ἐλλεῖπον εἴδει τετραγώνῳ, εἰς σύμμετρα αὐτὴν διαιρεῖ. παραβεβλήσθω οὖν παρὰ τὴν ΑΕ τῷ ἀπὸ τῆς ΕΖ ἴσον τὸ ὑπὸ ΑΗ, ΗΕ: σύμμετρος ἄρα ἐστὶν ἡ ΑΗ τῇ ΕΗ μήκει. καὶ ἤχθωσαν ἀπὸ τῶν Η, Ε, Ζ ὁποτέρᾳ τῶν ΑΒ, ΓΔ παράλληλοι αἱ ΗΘ, ΕΚ, ΖΛ: καὶ τῷ μὲν ΑΘ παραλληλογράμμῳ ἴσον τετράγωνον συνεστάτω τὸ ΣΝ, τῷ δὲ ΗΚ ἴσον τὸ ΝΠ, καὶ κείσθω ὥστε ἐπ εὐθείας εἶναι τὴν ΜΝ τῇ ΝΞ: ἐπ εὐθείας ἄρα ἐστὶ καὶ ἡ ΡΝ τῇ ΝΟ. καὶ συμπεπληρώσθω τὸ ΣΠ παραλληλόγραμμον: τετράγωνον ἄρα ἐστὶ τὸ ΣΠ. καὶ ἐπεὶ τὸ ὑπὸ τῶν ΑΗ, ΗΕ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΕΖ, ἔστιν ἄρα ὡς ἡ ΑΗ πρὸς ΕΖ, οὕτως ἡ ΖΕ πρὸς ΕΗ: καὶ ὡς ἄρα τὸ ΑΘ πρὸς ΕΛ, τὸ ΕΛ πρὸς ΚΗ: τῶν ΑΘ, ΗΚ ἄρα μέσον ἀνάλογόν ἐστι τὸ ΕΛ. ἀλλὰ τὸ μὲν ΑΘ ἴσον ἐστὶ τῷ ΣΝ, τὸ δὲ ΗΚ ἴσον τῷ ΝΠ: τῶν ΣΝ, ΝΠ ἄρα μέσον ἀνάλογόν ἐστι τὸ ΕΛ. ἔστι δὲ τῶν αὐτῶν τῶν ΣΝ, ΝΠ μέσον ἀνάλογον καὶ τὸ ΜΡ: ἴσον ἄρα ἐστὶ τὸ ΕΛ τῷ ΜΡ: ὥστε καὶ τῷ ΟΞ ἴσον ἐστίν. ἔστι δὲ καὶ τὰ ΑΘ, ΗΚ τοῖς ΣΝ, ΝΠ ἴσα: ὅλον ἄρα τὸ ΑΓ ἴσον ἐστὶν ὅλῳ τῷ ΣΠ, τουτέστι τῷ ἀπὸ τῆς ΜΞ τετραγώνῳ: τὸ ΑΓ ἄρα δύναται ἡ ΜΞ. Λέγω, ὅτι ἡ ΜΞ ἐκ δύο ὀνομάτων ἐστίν. Ἐπεὶ γὰρ σύμμετρός ἐστιν ἡ ΑΗ τῇ ΗΕ, σύμμετρός ἐστι καὶ ἡ ΑΕ ἑκατέρᾳ τῶν ΑΗ, ΗΕ. ὑπόκειται δὲ καὶ ἡ ΑΕ τῇ ΑΒ σύμμετρος: καὶ αἱ ΑΗ, ΗΕ ἄρα τῇ ΑΒ σύμμετροί εἰσιν. καί ἐστι ῥητὴ ἡ ΑΒ: ῥητὴ ἄρα ἐστὶ καὶ ἑκατέρα τῶν ΑΗ, ΗΕ: ῥητὸν ἄρα ἐστὶν ἑκάτερον τῶν ΑΘ, ΗΚ, καί ἐστι σύμμετρον τὸ ΑΘ τῷ ΗΚ. ἀλλὰ τὸ μὲν ΑΘ τῷ ΣΝ ἴσον ἐστίν, τὸ δὲ ΗΚ τῷ ΝΠ: καὶ τὰ ΣΝ, ΝΠ ἄρα, τουτέστι τὰ ἀπὸ τῶν ΜΝ, ΝΞ, ῥητά ἐστι καὶ σύμμετρα. καὶ ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΑΕ τῇ ΕΔ μήκει, ἀλλ ἡ μὲν ΑΕ τῇ ΑΗ ἐστι σύμμετρος, ἡ δὲ ΔΕ τῇ ΕΖ σύμμετρος, ἀσύμμετρος ἄρα καὶ ἡ ΑΗ τῇ ΕΖ: ὥστε καὶ τὸ ΑΘ τῷ ΕΛ ἀσύμμετρόν ἐστιν. ἀλλὰ τὸ μὲν ΑΘ τῷ ΣΝ ἐστιν ἴσον, τὸ δὲ ΕΛ τῷ ΜΡ: καὶ τὸ ΣΝ ἄρα τῷ ΜΡ ἀσύμμετρόν ἐστιν. ἀλλ ὡς τὸ ΣΝ πρὸς ΜΡ, ἡ ΟΝ πρὸς τὴν ΝΡ: ἀσύμμετρος ἄρα ἐστὶν ἡ ΟΝ τῇ ΝΡ. ἴση δὲ ἡ μὲν ΟΝ τῇ ΜΝ, ἡ δὲ ΝΡ τῇ ΝΞ: ἀσύμμετρος ἄρα ἐστὶν ἡ ΜΝ τῇ ΝΞ. καί ἐστι τὸ ἀπὸ τῆς ΜΝ σύμμετρον τῷ ἀπὸ τῆς ΝΞ, καὶ ῥητὸν ἑκάτερον: αἱ ΜΝ, ΝΞ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι. Ἡ ΜΞ ἄρα ἐκ δύο ὀνομάτων ἐστὶ καὶ δύναται τὸ ΑΓ: ὅπερ ἔδει δεῖξαι. Εἂν χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων δευτέρας, ἡ τὸ χωρίον δυναμένη ἄλογός ἐστιν ἡ καλουμένη ἐκ δύο μέσων πρώτη. Περιεχέσθω γὰρ χωρίον τὸ ΑΒΓΔ ὑπὸ ῥητῆς τῆς ΑΒ καὶ τῆς ἐκ δύο ὀνομάτων δευτέρας τῆς ΑΔ: λέγω, ὅτι ἡ τὸ ΑΓ χωρίον δυναμένη ἐκ δύο μέσων πρώτη ἐστίν. Ἐπεὶ γὰρ ἐκ δύο ὀνομάτων δευτέρα ἐστὶν ἡ ΑΔ, διῃρήσθω εἰς τὰ ὀνόματα κατὰ τὸ Ε, ὥστε τὸ μεῖζον ὄνομα εἶναι τὸ ΑΕ: αἱ ΑΕ, ΕΔ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι, καὶ ἡ ΑΕ τῆς ΕΔ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ, καὶ τὸ ἔλαττον ὄνομα ἡ ΕΔ σύμμετρόν ἐστι τῇ ΑΒ μήκει. τετμήσθω ἡ ΕΔ δίχα κατὰ τὸ Ζ, καὶ τῷ ἀπὸ τῆς ΕΖ ἴσον παρὰ τὴν ΑΕ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώνῳ τὸ ὑπὸ τῶν ΑΗΕ: σύμμετρος ἄρα ἡ ΑΗ τῇ ΗΕ μήκει. καὶ διὰ τῶν Η, Ε, Ζ παράλληλοι ἤχθωσαν ταῖς ΑΒ, ΓΔ αἱ ΗΘ, ΕΚ, ΖΛ, καὶ τῷ μὲν ΑΘ παραλληλογράμμῳ ἴσον τετράγωνον συνεστάτω τὸ ΣΝ, τῷ δὲ ΗΚ ἴσον τετράγωνον τὸ ΝΠ, καὶ κείσθω ὥστε ἐπ εὐθείας εἶναι τὴν ΜΝ τῇ ΝΞ: ἐπ εὐθείας ἄρα [ἐστὶ] καὶ ἡ ΡΝ τῇ ΝΟ. καὶ συμπεπληρώσθω τὸ ΣΠ τετράγωνον: φανερὸν δὴ ἐκ τοῦ προδεδειγμένου, ὅτι τὸ ΜΡ μέσον ἀνάλογόν ἐστι τῶν ΣΝ, ΝΠ, καὶ ἴσον τῷ ΕΛ, καὶ ὅτι τὸ ΑΓ χωρίον δύναται ἡ ΜΞ. δεικτέον δή, ὅτι ἡ ΜΞ ἐκ δύο μέσων ἐστὶ πρώτη. ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΑΕ τῇ ΕΔ μήκει, σύμμετρος δὲ ἡ ΕΔ τῇ ΑΒ, ἀσύμμετρος ἄρα ἡ ΑΕ τῇ ΑΒ. καὶ ἐπεὶ σύμμετρός ἐστιν ἡ ΑΗ τῇ ΕΗ, σύμμετρός ἐστι καὶ ἡ ΑΕ ἑκατέρᾳ τῶν ΑΗ, ΗΕ. ἀλλὰ ἡ ΑΕ ἀσύμμετρος τῇ ΑΒ μήκει: καὶ αἱ ΑΗ, ΗΕ ἄρα ἀσύμμετροί εἰσι τῇ ΑΒ. αἱ ΒΑ, ΑΗ, ΗΕ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ὥστε μέσον ἐστὶν ἑκάτερον τῶν ΑΘ, ΗΚ. ὥστε καὶ ἑκάτερον τῶν ΣΝ, ΝΠ μέσον ἐστίν. καὶ αἱ ΜΝ, ΝΞ ἄρα μέσαι εἰσίν. καὶ ἐπεὶ σύμμετρος ἡ ΑΗ τῇ ΗΕ μήκει, σύμμετρόν ἐστι καὶ τὸ ΑΘ τῷ ΗΚ, τουτέστι τὸ ΣΝ τῷ ΝΠ, τουτέστι τὸ ἀπὸ τῆς ΜΝ τῷ ἀπὸ τῆς ΝΞ [ὥστε δυνάμει εἰσὶ σύμμετροι αἱ ΜΝ, ΝΞ]. καὶ ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΑΕ τῇ ΕΔ μήκει, ἀλλ ἡ μὲν ΑΕ σύμμετρός ἐστι τῇ ΑΗ, ἡ δὲ ΕΔ τῇ ΕΖ σύμμετρος, ἀσύμμετρος ἄρα ἡ ΑΗ τῇ ΕΖ: ὥστε καὶ τὸ ΑΘ τῷ ΕΛ ἀσύμμετρόν ἐστιν, τουτέστι τὸ ΣΝ τῷ ΜΡ, τουτέστιν ἡ ΟΝ τῇ ΝΡ, τουτέστιν ἡ ΜΝ τῇ ΝΞ ἀσύμμετρός ἐστι μήκει. ἐδείχθησαν δὲ αἱ ΜΝ, ΝΞ καὶ μέσαι οὖσαι καὶ δυνάμει σύμμετροι: αἱ ΜΝ, ΝΞ ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι. λέγω δή, ὅτι καὶ ῥητὸν περιέχουσιν. ἐπεὶ γὰρ ἡ ΔΕ ὑπόκειται ἑκατέρᾳ τῶν ΑΒ, ΕΖ σύμμετρος, σύμμετρος ἄρα καὶ ἡ ΕΖ τῇ ΕΚ. καὶ ῥητὴ ἑκατέρα αὐτῶν: ῥητὸν ἄρα τὸ ΕΛ, τουτέστι τὸ ΜΡ: τὸ δὲ ΜΡ ἐστι τὸ ὑπὸ τῶν ΜΝΞ. ἐὰν δὲ δύο μέσαι δυνάμει μόνον σύμμετροι συντεθῶσι ῥητὸν περιέχουσαι, ἡ ὅλη ἄλογός ἐστιν, καλεῖται δὲ ἐκ δύο μέσων πρώτη. Ἡ ἄρα ΜΞ ἐκ δύο μέσων ἐστὶ πρώτη: ὅπερ ἔδει δεῖξαι. Εἂν χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων τρίτης, ἡ τὸ χωρίον δυναμένη ἄλογός ἐστιν ἡ καλουμένη ἐκ δύο μέσων δευτέρα. Χωρίον γὰρ τὸ ΑΒΓΔ περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΒ καὶ τῆς ἐκ δύο ὀνομάτων τρίτης τῆς ΑΔ διῃρημένης εἰς τὰ ὀνόματα κατὰ τὸ Ε, ὧν μεῖζόν ἐστι τὸ ΑΕ: λέγω, ὅτι ἡ τὸ ΑΓ χωρίον δυναμένη ἄλογός ἐστιν ἡ καλουμένη ἐκ δύο μέσων δευτέρα. Κατεσκευάσθω γὰρ τὰ αὐτὰ τοῖς πρότερον. καὶ ἐπεὶ ἐκ δύο ὀνομάτων ἐστὶ τρίτη ἡ ΑΔ, αἱ ΑΕ, ΕΔ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι, καὶ ἡ ΑΕ τῆς ΕΔ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ, καὶ οὐδετέρα τῶν ΑΕ, ΕΔ σύμμετρός [ἐστι] τῇ ΑΒ μήκει. ὁμοίως δὴ τοῖς προδεδειγμένοις δείξομεν, ὅτι ἡ ΜΞ ἐστιν ἡ τὸ ΑΓ χωρίον δυναμένη, καὶ αἱ ΜΝ, ΝΞ μέσαι εἰσὶ δυνάμει μόνον σύμμετροι: ὥστε ἡ ΜΞ ἐκ δύο μέσων ἐστίν. Δεικτέον δή, ὅτι καὶ δευτέρα. [Καὶ] ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΔΕ τῇ ΑΒ μήκει, τουτέστι τῇ ΕΚ, σύμμετρος δὲ ἡ ΔΕ τῇ ΕΖ, ἀσύμμετρος ἄρα ἐστὶν ἡ ΕΖ τῇ ΕΚ μήκει. καί εἰσι ῥηταί: αἱ ΖΕ, ΕΚ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι. μέσον ἄρα [ἐστὶ] τὸ ΕΛ, τουτέστι τὸ ΜΡ: καὶ περιέχεται ὑπὸ τῶν ΜΝΞ: μέσον ἄρα ἐστὶ τὸ ὑπὸ τῶν ΜΝΞ. Ἡ ΜΞ ἄρα ἐκ δύο μέσων ἐστὶ δευτέρα: ὅπερ ἔδει δεῖξαι. Εἂν χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων τετάρτης, ἡ τὸ χωρίον δυναμένη ἄλογός ἐστιν ἡ καλουμένη μείζων. Χωρίον γὰρ τὸ ΑΓ περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΒ καὶ τῆς ἐκ δύο ὀνομάτων τετάρτης τῆς ΑΔ διῃρημένης εἰς τὰ ὀνόματα κατὰ τὸ Ε, ὧν μεῖζον ἔστω τὸ ΑΕ: λέγω, ὅτι ἡ τὸ ΑΓ χωρίον δυναμένη ἄλογός ἐστιν ἡ καλουμένη μείζων. Ἐπεὶ γὰρ ἡ ΑΔ ἐκ δύο ὀνομάτων ἐστὶ τετάρτη, αἱ ΑΕ, ΕΔ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι, καὶ ἡ ΑΕ τῆς ΕΔ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ, καὶ ἡ ΑΕ τῇ ΑΒ σύμμετρός [ἐστι] μήκει. τετμήσθω ἡ ΔΕ δίχα κατὰ τὸ Ζ, καὶ τῷ ἀπὸ τῆς ΕΖ ἴσον παρὰ τὴν ΑΕ παραβεβλήσθω παραλληλόγραμμον τὸ ὑπὸ ΑΗ, ΗΕ: ἀσύμμετρος ἄρα ἐστὶν ἡ ΑΗ τῇ ΗΕ μήκει. ἤχθωσαν παράλληλοι τῇ ΑΒ αἱ ΗΘ, ΕΚ, ΖΛ, καὶ τὰ λοιπὰ τὰ αὐτὰ τοῖς πρὸ τούτου γεγονέτω: φανερὸν δή, ὅτι ἡ τὸ ΑΓ χωρίον δυναμένη ἐστὶν ἡ ΜΞ. δεικτέον δή, ὅτι ἡ ΜΞ ἄλογός ἐστιν ἡ καλουμένη μείζων. ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΑΗ τῇ ΕΗ μήκει, ἀσύμμετρόν ἐστι καὶ τὸ ΑΘ τῷ ΗΚ, τουτέστι τὸ ΣΝ τῷ ΝΠ: αἱ ΜΝ, ΝΞ ἄρα δυνάμει εἰσὶν ἀσύμμετροι. καὶ ἐπεὶ σύμμετρός ἐστιν ἡ ΑΕ τῇ ΑΒ μήκει, ῥητόν ἐστι τὸ ΑΚ: καί ἐστιν ἴσον τοῖς ἀπὸ τῶν ΜΝ, ΝΞ: ῥητὸν ἄρα [ἐστὶ] καὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΜΝ, ΝΞ. καὶ ἐπεὶ ἀσύμμετρός [ἐστιν] ἡ ΔΕ τῇ ΑΒ μήκει, τουτέστι τῇ ΕΚ, ἀλλὰ ἡ ΔΕ σύμμετρός ἐστι τῇ ΕΖ, ἀσύμμετρος ἄρα ἡ ΕΖ τῇ ΕΚ μήκει. αἱ ΕΚ, ΕΖ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: μέσον ἄρα τὸ ΛΕ, τουτέστι τὸ ΜΡ. καὶ περιέχεται ὑπὸ τῶν ΜΝ, ΝΞ: μέσον ἄρα ἐστὶ τὸ ὑπὸ τῶν ΜΝ, ΝΞ. καὶ ῥητὸν τὸ [συγκείμενον] ἐκ τῶν ἀπὸ τῶν ΜΝ, ΝΞ, καί εἰσιν ἀσύμμετροι αἱ ΜΝ, ΝΞ δυνάμει. ἐὰν δὲ δύο εὐθεῖαι δυνάμει ἀσύμμετροι συντεθῶσι ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπ αὐτῶν τετραγώνων ῥητόν, τὸ δ ὑπ αὐτῶν μέσον, ἡ ὅλη ἄλογός ἐστιν, καλεῖται δὲ μείζων. Ἡ ΜΞ ἄρα ἄλογός ἐστιν ἡ καλουμένη μείζων, καὶ δύναται τὸ ΑΓ χωρίον: ὅπερ ἔδει δεῖξαι. Εἂν χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων πέμπτης, ἡ τὸ χωρίον δυναμένη ἄλογός ἐστιν ἡ καλουμένη ῥητὸν καὶ μέσον δυναμένη. Χωρίον γὰρ τὸ ΑΓ περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΒ καὶ τῆς ἐκ δύο ὀνομάτων πέμπτης τῆς ΑΔ διῃρημένης εἰς τὰ ὀνόματα κατὰ τὸ Ε, ὥστε τὸ μεῖζον ὄνομα εἶναι τὸ ΑΕ: λέγω [δή], ὅτι ἡ τὸ ΑΓ χωρίον δυναμένη ἄλογός ἐστιν ἡ καλουμένη ῥητὸν καὶ μέσον δυναμένη. Κατεσκευάσθω γὰρ τὰ αὐτὰ τοῖς πρότερον δεδειγμένοις: φανερὸν δή, ὅτι ἡ τὸ ΑΓ χωρίον δυναμένη ἐστὶν ἡ ΜΞ. δεικτέον δή, ὅτι ἡ ΜΞ ἐστιν ἡ ῥητὸν καὶ μέσον δυναμένη. ἐπεὶ γὰρ ἀσύμμετρός ἐστιν ἡ ΑΗ τῇ ΗΕ, ἀσύμμετρον ἄρα ἐστὶ καὶ τὸ ΑΘ τῷ ΘΕ, τουτέστι τὸ ἀπὸ τῆς ΜΝ τῷ ἀπὸ τῆς ΝΞ: αἱ ΜΝ, ΝΞ ἄρα δυνάμει εἰσὶν ἀσύμμετροι. καὶ ἐπεὶ ἡ ΑΔ ἐκ δύο ὀνομάτων ἐστὶ πέμπτη, καί [ἐστιν] ἔλασσον αὐτῆς τμῆμα τὸ ΕΔ, σύμμετρος ἄρα ἡ ΕΔ τῇ ΑΒ μήκει. ἀλλὰ ἡ ΑΕ τῇ ΕΔ ἐστιν ἀσύμμετρος: καὶ ἡ ΑΒ ἄρα τῇ ΑΕ ἐστιν ἀσύμμετρος μήκει. [αἱ ΒΑ, ΑΕ ῥηταί εἰσι δυνάμει μόνον σύμμετροι. ] μέσον ἄρα ἐστὶ τὸ ΑΚ, τουτέστι τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΜΝ, ΝΞ. καὶ ἐπεὶ σύμμετρός ἐστιν ἡ ΔΕ τῇ ΑΒ μήκει, τουτέστι τῇ ΕΚ, ἀλλὰ ἡ ΔΕ τῇ ΕΖ σύμμετρός ἐστιν, καὶ ἡ ΕΖ ἄρα τῇ ΕΚ σύμμετρός ἐστιν. καὶ ῥητὴ ἡ ΕΚ: ῥητὸν ἄρα καὶ τὸ ΕΛ, τουτέστι τὸ ΜΡ, τουτέστι τὸ ὑπὸ ΜΝΞ: αἱ ΜΝ, ΝΞ ἄρα δυνάμει ἀσύμμετροί εἰσι ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπ αὐτῶν τετραγώνων μέσον, τὸ δ ὑπ αὐτῶν ῥητόν. Ἡ ΜΞ ἄρα ῥητὸν καὶ μέσον δυναμένη ἐστὶ καὶ δύναται τὸ ΑΓ χωρίον: ὅπερ ἔδει δεῖξαι. Εἂν χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων ἕκτης, ἡ τὸ χωρίον δυναμένη ἄλογός ἐστιν ἡ καλουμένη δύο μέσα δυναμένη. Χωρίον γὰρ τὸ ΑΒΓΔ περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΒ καὶ τῆς ἐκ δύο ὀνομάτων ἕκτης τῆς ΑΔ διῃρημένης εἰς τὰ ὀνόματα κατὰ τὸ Ε, ὥστε τὸ μεῖζον ὄνομα εἶναι τὸ ΑΕ: λέγω, ὅτι ἡ τὸ ΑΓ δυναμένη ἡ δύο μέσα δυναμένη ἐστίν. Κατεσκευάσθω [γὰρ] τὰ αὐτὰ τοῖς προδεδειγμένοις. φανερὸν δή, ὅτι [ἡ] τὸ ΑΓ δυναμένη ἐστὶν ἡ ΜΞ, καὶ ὅτι ἀσύμμετρός ἐστι ἡ ΜΝ τῇ ΝΞ δυνάμει. καὶ ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΕΑ τῇ ΑΒ μήκει, αἱ ΕΑ, ΑΒ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: μέσον ἄρα ἐστὶ τὸ ΑΚ, τουτέστι τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΜΝ, ΝΞ. πάλιν, ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΕΔ τῇ ΑΒ μήκει, ἀσύμμετρος ἄρα ἐστὶ καὶ ἡ ΖΕ τῇ ΕΚ: αἱ ΖΕ, ΕΚ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: μέσον ἄρα ἐστὶ τὸ ΕΛ, τουτέστι τὸ ΜΡ, τουτέστι τὸ ὑπὸ τῶν ΜΝΞ. καὶ ἐπεὶ ἀσύμμετρος ἡ ΑΕ τῇ ΕΖ, καὶ τὸ ΑΚ τῷ ΕΛ ἀσύμμετρόν ἐστιν. ἀλλὰ τὸ μὲν ΑΚ ἐστι τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΜΝ, ΝΞ, τὸ δὲ ΕΛ ἐστι τὸ ὑπὸ τῶν ΜΝΞ: ἀσύμμετρον ἄρα ἐστὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΜΝΞ τῷ ὑπὸ τῶν ΜΝΞ. καί ἐστι μέσον ἑκάτερον αὐτῶν, καὶ αἱ ΜΝ, ΝΞ δυνάμει εἰσὶν ἀσύμμετροι. Ἡ ΜΞ ἄρα δύο μέσα δυναμένη ἐστὶ καὶ δύναται τὸ ΑΓ: ὅπερ ἔδει δεῖξαι. [Λῆμμα Εἂν εὐθεῖα γραμμὴ τμηθῇ εἰς ἄνισα, τὰ ἀπὸ τῶν ἀνίσων τετράγωνα μείζονά ἐστι τοῦ δὶς ὑπὸ τῶν ἀνίσων περιεχομένου ὀρθογωνίου. Ἔστω εὐθεῖα ἡ ΑΒ καὶ τετμήσθω εἰς ἄνισα κατὰ τὸ Γ, καὶ ἔστω μείζων ἡ ΑΓ: λέγω, ὅτι τὰ ἀπὸ τῶν ΑΓ, ΓΒ μείζονά ἐστι τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ. Τετμήσθω γὰρ ἡ ΑΒ δίχα κατὰ τὸ Δ. ἐπεὶ οὖν εὐθεῖα γραμμὴ τέτμηται εἰς μὲν ἴσα κατὰ τὸ Δ, εἰς δὲ ἄνισα κατὰ τὸ Γ, τὸ ἄρα ὑπὸ τῶν ΑΓ, ΓΒ μετὰ τοῦ ἀπὸ ΓΔ ἴσον ἐστὶ τῷ ἀπὸ ΑΔ: ὥστε τὸ ὑπὸ τῶν ΑΓ, ΓΒ ἔλαττόν ἐστι τοῦ ἀπὸ ΑΔ: τὸ ἄρα δὶς ὑπὸ τῶν ΑΓ, ΓΒ ἔλαττον ἢ διπλάσιόν ἐστι τοῦ ἀπὸ ΑΔ. ἀλλὰ τὰ ἀπὸ τῶν ΑΓ, ΓΒ διπλάσιά [ἐστι] τῶν ἀπὸ τῶν ΑΔ, ΔΓ: τὰ ἄρα ἀπὸ τῶν ΑΓ, ΓΒ μείζονά ἐστι τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ: ὅπερ ἔδει δεῖξαι. ] Τὸ ἀπὸ τῆς ἐκ δύο ὀνομάτων παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ τὴν ἐκ δύο ὀνομάτων πρώτην. Ἔστω ἐκ δύο ὀνομάτων ἡ ΑΒ διῃρημένη εἰς τὰ ὀνόματα κατὰ τὸ Γ, ὥστε τὸ μεῖζον ὄνομα εἶναι τὸ ΑΓ, καὶ ἐκκείσθω ῥητὴ ἡ ΔΕ, καὶ τῷ ἀπὸ τῆς ΑΒ ἴσον παρὰ τὴν ΔΕ παραβεβλήσθω τὸ ΔΕΖΗ πλάτος ποιοῦν τὴν ΔΗ: λέγω, ὅτι ἡ ΔΗ ἐκ δύο ὀνομάτων ἐστὶ πρώτη. Παραβεβλήσθω γὰρ παρὰ τὴν ΔΕ τῷ μὲν ἀπὸ τῆς ΑΓ ἴσον τὸ ΔΘ, τῷ δὲ ἀπὸ τῆς ΒΓ ἴσον τὸ ΚΛ: λοιπὸν ἄρα τὸ δὶς ὑπὸ τῶν ΑΓ, ΓΒ ἴσον ἐστὶ τῷ ΜΖ. τετμήσθω ἡ ΜΗ δίχα κατὰ τὸ Ν, καὶ παράλληλος ἤχθω ἡ ΝΞ [ἑκατέρᾳ τῶν ΜΛ, ΗΖ]. ἑκάτερον ἄρα τῶν ΜΞ, ΝΖ ἴσον ἐστὶ τῷ ἅπαξ ὑπὸ τῶν ΑΓΒ. καὶ ἐπεὶ ἐκ δύο ὀνομάτων ἐστὶν ἡ ΑΒ διῃρημένη εἰς τὰ ὀνόματα κατὰ τὸ Γ, αἱ ΑΓ, ΓΒ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: τὰ ἄρα ἀπὸ τῶν ΑΓ, ΓΒ ῥητά ἐστι καὶ σύμμετρα ἀλλήλοις: ὥστε καὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΓ, ΓΒ [σύμμετρόν ἐστι τοῖς ἀπὸ τῶν ΑΓ, ΓΒ: ῥητὸν ἄρα ἐστὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΓ, ΓΒ]. καί ἐστιν ἴσον τῷ ΔΛ: ῥητὸν ἄρα ἐστὶ τὸ ΔΛ. καὶ παρὰ ῥητὴν τὴν ΔΕ παράκειται: ῥητὴ ἄρα ἐστὶν ἡ ΔΜ καὶ σύμμετρος τῇ ΔΕ μήκει. πάλιν, ἐπεὶ αἱ ΑΓ, ΓΒ ῥηταί εἰσι δυνάμει μόνον σύμμετροι, μέσον ἄρα ἐστὶ τὸ δὶς ὑπὸ τῶν ΑΓ, ΓΒ, τουτέστι τὸ ΜΖ. καὶ παρὰ ῥητὴν τὴν ΜΛ παράκειται: ῥητὴ ἄρα καὶ ἡ ΜΗ ἐστι καὶ ἀσύμμετρος τῇ ΜΛ, τουτέστι τῇ ΔΕ, μήκει. ἔστι δὲ καὶ ἡ ΜΔ ῥητὴ καὶ τῇ ΔΕ μήκει σύμμετρος: ἀσύμμετρος ἄρα ἐστὶν ἡ ΔΜ τῇ ΜΗ μήκει. καί εἰσι ῥηταί: αἱ ΔΜ, ΜΗ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἐκ δύο ἄρα ὀνομάτων ἐστὶν ἡ ΔΗ. Δεικτέον δή, ὅτι καὶ πρώτη. Ἐπεὶ τῶν ἀπὸ τῶν ΑΓ, ΓΒ μέσον ἀνάλογόν ἐστι τὸ ὑπὸ τῶν ΑΓΒ, καὶ τῶν ΔΘ, ΚΛ ἄρα μέσον ἀνάλογόν ἐστι τὸ ΜΞ. ἔστιν ἄρα ὡς τὸ ΔΘ πρὸς τὸ ΜΞ, οὕτως τὸ ΜΞ πρὸς τὸ ΚΛ, τουτέστιν ὡς ἡ ΔΚ πρὸς τὴν ΜΝ, ἡ ΜΝ πρὸς τὴν ΜΚ: τὸ ἄρα ὑπὸ τῶν ΔΚ, ΚΜ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΜΝ. καὶ ἐπεὶ σύμμετρόν ἐστι τὸ ἀπὸ τῆς ΑΓ τῷ ἀπὸ τῆς ΓΒ, σύμμετρόν ἐστι καὶ τὸ ΔΘ τῷ ΚΛ: ὥστε καὶ ἡ ΔΚ τῇ ΚΜ σύμμετρός ἐστιν. καὶ ἐπεὶ μείζονά ἐστι τὰ ἀπὸ τῶν ΑΓ, ΓΒ τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ, μεῖζον ἄρα καὶ τὸ ΔΛ τοῦ ΜΖ: ὥστε καὶ ἡ ΔΜ τῆς ΜΗ μείζων ἐστίν. καί ἐστιν ἴσον τὸ ὑπὸ τῶν ΔΚ, ΚΜ τῷ ἀπὸ τῆς ΜΝ, τουτέστι τῷ τετάρτῳ τοῦ ἀπὸ τῆς ΜΗ, καὶ σύμμετρος ἡ ΔΚ τῇ ΚΜ. ἐὰν δὲ ὦσι δύο εὐθεῖαι ἄνισοι, τῷ δὲ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ἐλάσσονος ἴσον παρὰ τὴν μείζονα παραβληθῇ ἐλλεῖπον εἴδει τετραγώνῳ καὶ εἰς σύμμετρα αὐτὴν διαιρῇ, ἡ μείζων τῆς ἐλάσσονος μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ: ἡ ΔΜ ἄρα τῆς ΜΗ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ. καί εἰσι ῥηταὶ αἱ ΔΜ, ΜΗ, καὶ ἡ ΔΜ μεῖζον ὄνομα σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΔΕ μήκει. Ἡ ΔΗ ἄρα ἐκ δύο ὀνομάτων ἐστὶ πρώτη: ὅπερ ἔδει δεῖξαι. Τὸ ἀπὸ τῆς ἐκ δύο μέσων πρώτης παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ τὴν ἐκ δύο ὀνομάτων δευτέραν. Ἔστω ἐκ δύο μέσων πρώτη ἡ ΑΒ διῃρημένη εἰς τὰς μέσας κατὰ τὸ Γ, ὧν μείζων ἡ ΑΓ, καὶ ἐκκείσθω ῥητὴ ἡ ΔΕ, καὶ παραβεβλήσθω παρὰ τὴν ΔΕ τῷ ἀπὸ τῆς ΑΒ ἴσον παραλληλόγραμμον τὸ ΔΖ πλάτος ποιοῦν τὴν ΔΗ: λέγω, ὅτι ἡ ΔΗ ἐκ δύο ὀνομάτων ἐστὶ δευτέρα. Κατεσκευάσθω γὰρ τὰ αὐτὰ τοῖς πρὸ τούτου. καὶ ἐπεὶ ἡ ΑΒ ἐκ δύο μέσων ἐστὶ πρώτη διῃρημένη κατὰ τὸ Γ, αἱ ΑΓ, ΓΒ ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι ῥητὸν περιέχουσαι: ὥστε καὶ τὰ ἀπὸ τῶν ΑΓ, ΓΒ μέσα ἐστίν. μέσον ἄρα ἐστὶ τὸ ΔΛ. καὶ παρὰ ῥητὴν τὴν ΔΕ παραβέβληται: ῥητὴ ἄρα ἐστίν ἡ ΜΔ καὶ ἀσύμμετρος τῇ ΔΕ μήκει. πάλιν, ἐπεὶ ῥητόν ἐστι τὸ δὶς ὑπὸ τῶν ΑΓ, ΓΒ, ῥητόν ἐστι καὶ τὸ ΜΖ. καὶ παρὰ ῥητὴν τὴν ΜΛ παράκειται: ῥητὴ ἄρα [ἐστὶ] καὶ ἡ ΜΗ καὶ μήκει σύμμετρος τῇ ΜΛ, τουτέστι τῇ ΔΕ: ἀσύμμετρος ἄρα ἐστὶν ἡ ΔΜ τῇ ΜΗ μήκει. καί εἰσι ῥηταί: αἱ ΔΜ, ΜΗ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἐκ δύο ἄρα ὀνομάτων ἐστὶν ἡ ΔΗ. Δεικτέον δή, ὅτι καὶ δευτέρα. Ἐπεὶ γὰρ τὰ ἀπὸ τῶν ΑΓ, ΓΒ μείζονά ἐστι τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ, μεῖζον ἄρα καὶ τὸ ΔΛ τοῦ ΜΖ: ὥστε καὶ ἡ ΔΜ τῆς ΜΗ. καὶ ἐπεὶ σύμμετρόν ἐστι τὸ ἀπὸ τῆς ΑΓ τῷ ἀπὸ τῆς ΓΒ, σύμμετρόν ἐστι καὶ τὸ ΔΘ τῷ ΚΛ: ὥστε καὶ ἡ ΔΚ τῇ ΚΜ σύμμετρός ἐστιν. καί ἐστι τὸ ὑπὸ τῶν ΔΚΜ ἴσον τῷ ἀπὸ τῆς ΜΝ: ἡ ΔΜ ἄρα τῆς ΜΗ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ. καί ἐστιν ἡ ΜΗ σύμμετρος τῇ ΔΕ μήκει. Ἡ ΔΗ ἄρα ἐκ δύο ὀνομάτων ἐστὶ δευτέρα. Τὸ ἀπὸ τῆς ἐκ δύο μέσων δευτέρας παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ τὴν ἐκ δύο ὀνομάτων τρίτην. Ἔστω ἐκ δύο μέσων δευτέρα ἡ ΑΒ διῃρημένη εἰς τὰς μέσας κατὰ τὸ Γ, ὥστε τὸ μεῖζον τμῆμα εἶναι τὸ ΑΓ, ῥητὴ δέ τις ἔστω ἡ ΔΕ, καὶ παρὰ τὴν ΔΕ τῷ ἀπὸ τῆς ΑΒ ἴσον παραλληλόγραμμον παραβεβλήσθω τὸ ΔΖ πλάτος ποιοῦν τὴν ΔΗ: λέγω, ὅτι ἡ ΔΗ ἐκ δύο ὀνομάτων ἐστὶ τρίτη. Κατεσκευάσθω τὰ αὐτὰ τοῖς προδεδειγμένοις. καὶ ἐπεὶ ἐκ δύο μέσων δευτέρα ἐστὶν ἡ ΑΒ διῃρημένη κατὰ τὸ Γ, αἱ ΑΓ, ΓΒ ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι μέσον περιέχουσαι: ὥστε καὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΓ, ΓΒ μέσον ἐστίν. καί ἐστιν ἴσον τῷ ΔΛ: μέσον ἄρα καὶ τὸ ΔΛ. καὶ παράκειται παρὰ ῥητὴν τὴν ΔΕ: ῥητὴ ἄρα ἐστὶ καὶ ἡ ΜΔ καὶ ἀσύμμετρος τῇ ΔΕ μήκει. διὰ τὰ αὐτὰ δὴ καὶ ἡ ΜΗ ῥητή ἐστι καὶ ἀσύμμετρος τῇ ΜΛ, τουτέστι τῇ ΔΕ, μήκει: ῥητὴ ἄρα ἐστὶν ἑκατέρα τῶν ΔΜ, ΜΗ καὶ ἀσύμμετρος τῇ ΔΕ μήκει. καὶ ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΑΓ τῇ ΓΒ μήκει, ὡς δὲ ἡ ΑΓ πρὸς τὴν ΓΒ, οὕτως τὸ ἀπὸ τῆς ΑΓ πρὸς τὸ ὑπὸ τῶν ΑΓΒ, ἀσύμμετρον ἄρα καὶ τὸ ἀπὸ τῆς ΑΓ τῷ ὑπὸ τῶν ΑΓΒ. ὥστε καὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΓ, ΓΒ τῷ δὶς ὑπὸ τῶν ΑΓΒ ἀσύμμετρόν ἐστιν, τουτέστι τὸ ΔΛ τῷ ΜΖ: ὥστε καὶ ἡ ΔΜ τῇ ΜΗ ἀσύμμετρός ἐστιν. καί εἰσι ῥηταί: ἐκ δύο ἄρα ὀνομάτων ἐστὶν ἡ ΔΗ. Δεικτέον [δή], ὅτι καὶ τρίτη. Ὁμοίως δὴ τοῖς προτέροις ἐπιλογιούμεθα, ὅτι μείζων ἐστὶν ἡ ΔΜ τῆς ΜΗ, καὶ σύμμετρος ἡ ΔΚ τῇ ΚΜ. καί ἐστι τὸ ὑπὸ τῶν ΔΚΜ ἴσον τῷ ἀπὸ τῆς ΜΝ: ἡ ΔΜ ἄρα τῆς ΜΗ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ. καὶ οὐδετέρα τῶν ΔΜ, ΜΗ σύμμετρός ἐστι τῇ ΔΕ μήκει. Ἡ ΔΗ ἄρα ἐκ δύο ὀνομάτων ἐστὶ τρίτη: ὅπερ ἔδει δεῖξαι. Τὸ ἀπὸ τῆς μείζονος παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ τὴν ἐκ δύο ὀνομάτων τετάρτην. Ἔστω μείζων ἡ ΑΒ διῃρημένη κατὰ τὸ Γ, ὥστε μείζονα εἶναι τὴν ΑΓ τῆς ΓΒ, ῥητὴ δὲ ἡ ΔΕ, καὶ τῷ ἀπὸ τῆς ΑΒ ἴσον παρὰ τὴν ΔΕ παραβεβλήσθω τὸ ΔΖ παραλληλόγραμμον πλάτος ποιοῦν τὴν ΔΗ: λέγω, ὅτι ἡ ΔΗ ἐκ δύο ὀνομάτων ἐστὶ τετάρτη. Κατεσκευάσθω τὰ αὐτὰ τοῖς προδεδειγμένοις. καὶ ἐπεὶ μείζων ἐστὶν ἡ ΑΒ διῃρημένη κατὰ τὸ Γ, αἱ ΑΓ, ΓΒ δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπ αὐτῶν τετραγώνων ῥητόν, τὸ δὲ ὑπ αὐτῶν μέσον. ἐπεὶ οὖν ῥητόν ἐστι τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΓ, ΓΒ, ῥητὸν ἄρα ἐστὶ τὸ ΔΛ: ῥητὴ ἄρα καὶ ἡ ΔΜ καὶ σύμμετρος τῇ ΔΕ μήκει. πάλιν, ἐπεὶ μέσον ἐστὶ τὸ δὶς ὑπὸ τῶν ΑΓ, ΓΒ, τουτέστι τὸ ΜΖ, καὶ παρὰ ῥητήν ἐστι τὴν ΜΛ, ῥητὴ ἄρα ἐστὶ καὶ ἡ ΜΗ καὶ ἀσύμμετρος τῇ ΔΕ μήκει: ἀσύμμετρος ἄρα ἐστὶ καὶ ἡ ΔΜ τῇ ΜΗ μήκει. αἱ ΔΜ, ΜΗ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἐκ δύο ἄρα ὀνομάτων ἐστὶν ἡ ΔΗ. Δεικτέον [δή], ὅτι καὶ τετάρτη. Ὁμοίως δὴ δείξομεν τοῖς πρότερον, ὅτι μείζων ἐστὶν ἡ ΔΜ τῆς ΜΗ, καὶ ὅτι τὸ ὑπὸ ΔΚΜ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΜΝ. ἐπεὶ οὖν ἀσύμμετρόν ἐστι τὸ ἀπὸ τῆς ΑΓ τῷ ἀπὸ τῆς ΓΒ, ἀσύμμετρον ἄρα ἐστὶ καὶ τὸ ΔΘ τῷ ΚΛ: ὥστε ἀσύμμετρος καὶ ἡ ΔΚ τῇ ΚΜ ἐστιν. ἐὰν δὲ ὦσι δύο εὐθεῖαι ἄνισοι, τῷ δὲ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ἐλάσσονος ἴσον παραλληλόγραμμον παρὰ τὴν μείζονα παραβληθῇ ἐλλεῖπον εἴδει τετραγώνῳ καὶ εἰς ἀσύμμετρα αὐτὴν διαιρῇ, ἡ μείζων τῆς ἐλάσσονος μεῖζον δυνήσεται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει: ἡ ΔΜ ἄρα τῆς ΜΗ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ. καί εἰσιν αἱ ΔΜ, ΜΗ ῥηταὶ δυνάμει μόνον σύμμετροι, καὶ ἡ ΔΜ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΔΕ. Ἡ ΔΗ ἄρα ἐκ δύο ὀνομάτων ἐστὶ τετάρτη: ὅπερ ἔδει δεῖξαι. Τὸ ἀπὸ τῆς ῥητὸν καὶ μέσον δυναμένης παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ τὴν ἐκ δύο ὀνομάτων πέμπτην. Ἔστω ῥητὸν καὶ μέσον δυναμένη ἡ ΑΒ διῃρημένη εἰς τὰς εὐθείας κατὰ τὸ Γ, ὥστε μείζονα εἶναι τὴν ΑΓ, καὶ ἐκκείσθω ῥητὴ ἡ ΔΕ, καὶ τῷ ἀπὸ τῆς ΑΒ ἴσον παρὰ τὴν ΔΕ παραβεβλήσθω τὸ ΔΖ πλάτος ποιοῦν τὴν ΔΗ: λέγω, ὅτι ἡ ΔΗ ἐκ δύο ὀνομάτων ἐστὶ πέμπτη. Κατεσκευάσθω τὰ αὐτὰ τοῖς πρὸ τούτου. ἐπεὶ οὖν ῥητὸν καὶ μέσον δυναμένη ἐστὶν ἡ ΑΒ διῃρημένη κατὰ τὸ Γ, αἱ ΑΓ, ΓΒ ἄρα δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπ αὐτῶν τετραγώνων μέσον, τὸ δ ὑπ αὐτῶν ῥητόν. ἐπεὶ οὖν μέσον ἐστὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΓ, ΓΒ, μέσον ἄρα ἐστὶ τὸ ΔΛ: ὥστε ῥητή ἐστιν ἡ ΔΜ καὶ μήκει ἀσύμμετρος τῇ ΔΕ. πάλιν, ἐπεὶ ῥητόν ἐστι τὸ δὶς ὑπὸ τῶν ΑΓΒ, τουτέστι τὸ ΜΖ, ῥητὴ ἄρα ἡ ΜΗ καὶ σύμμετρος τῇ ΔΕ. ἀσύμμετρος ἄρα ἡ ΔΜ τῇ ΜΗ: αἱ ΔΜ, ΜΗ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἐκ δύο ἄρα ὀνομάτων ἐστὶν ἡ ΔΗ. Λέγω δή, ὅτι καὶ πέμπτη. Ὁμοίως γὰρ δειχθήσεται, ὅτι τὸ ὑπὸ τῶν ΔΚΜ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΜΝ, καὶ ἀσύμμετρος ἡ ΔΚ τῇ ΚΜ μήκει: ἡ ΔΜ ἄρα τῆς ΜΗ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ. καί εἰσιν αἱ ΔΜ, ΜΗ [ῥηταὶ] δυνάμει μόνον σύμμετροι, καὶ ἡ ἐλάσσων ἡ ΜΗ σύμμετρος τῇ ΔΕ μήκει. Ἡ ΔΗ ἄρα ἐκ δύο ὀνομάτων ἐστὶ πέμπτη: ὅπερ ἔδει δεῖξαι. Τὸ ἀπὸ τῆς δύο μέσα δυναμένης παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ τὴν ἐκ δύο ὀνομάτων ἕκτην. Ἔστω δύο μέσα δυναμένη ἡ ΑΒ διῃρημένη κατὰ τὸ Γ, ῥητὴ δὲ ἔστω ἡ ΔΕ. καὶ παρὰ τὴν ΔΕ τῷ ἀπὸ τῆς ΑΒ ἴσον παραβεβλήσθω τὸ ΔΖ πλάτος ποιοῦν τὴν ΔΗ: λέγω, ὅτι ἡ ΔΗ ἐκ δύο ὀνομάτων ἐστὶν ἕκτη. Κατεσκευάσθω γὰρ τὰ αὐτὰ τοῖς πρότερον. καὶ ἐπεὶ ἡ ΑΒ δύο μέσα δυναμένη ἐστὶ διῃρημένη κατὰ τὸ Γ, αἱ ΑΓ, ΓΒ ἄρα δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τό τε συγκείμενον ἐκ τῶν ἀπ αὐτῶν τετραγώνων μέσον καὶ τὸ ὑπ αὐτῶν μέσον καὶ ἔτι ἀσύμμετρον τὸ ἐκ τῶν ἀπ αὐτῶν τετραγώνων συγκείμενον τῷ ὑπ αὐτῶν: ὥστε κατὰ τὰ προδεδειγμένα μέσον ἐστὶν ἑκάτερον τῶν ΔΛ, ΜΖ. καὶ παρὰ ῥητὴν τὴν ΔΕ παράκειται: ῥητὴ ἄρα ἐστὶν ἑκατέρα τῶν ΔΜ, ΜΗ καὶ ἀσύμμετρος τῇ ΔΕ μήκει. καὶ ἐπεὶ ἀσύμμετρόν ἐστι τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΓ, ΓΒ τῷ δὶς ὑπὸ τῶν ΑΓ, ΓΒ, ἀσύμμετρον ἄρα ἐστὶ τὸ ΔΛ τῷ ΜΖ. ἀσύμμετρος ἄρα καὶ ἡ ΔΜ τῇ ΜΗ: αἱ ΔΜ, ΜΗ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἐκ δύο ἄρα ὀνομάτων ἐστὶν ἡ ΔΗ. Λέγω δή, ὅτι καὶ ἕκτη. Ὁμοίως δὴ πάλιν δείξομεν, ὅτι τὸ ὑπὸ τῶν ΔΚΜ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΜΝ, καὶ ὅτι ἡ ΔΚ τῇ ΚΜ μήκει ἐστὶν ἀσύμμετρος: καὶ διὰ τὰ αὐτὰ δὴ ἡ ΔΜ τῆς ΜΗ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει. καὶ οὐδετέρα τῶν ΔΜ, ΜΗ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΔΕ μήκει. Ἡ ΔΗ ἄρα ἐκ δύο ὀνομάτων ἐστὶν ἕκτη: ὅπερ ἔδει δεῖξαι. Ἡ τῇ ἐκ δύο ὀνομάτων μήκει σύμμετρος καὶ αὐτὴ ἐκ δύο ὀνομάτων ἐστὶ καὶ τῇ τάξει ἡ αὐτή. Ἔστω ἐκ δύο ὀνομάτων ἡ ΑΒ, καὶ τῇ ΑΒ μήκει σύμμετρος ἔστω ἡ ΓΔ: λέγω, ὅτι ἡ ΓΔ ἐκ δύο ὀνομάτων ἐστὶ καὶ τῇ τάξει ἡ αὐτὴ τῇ ΑΒ. Ἐπεὶ γὰρ ἐκ δύο ὀνομάτων ἐστὶν ἡ ΑΒ, διῃρήσθω εἰς τὰ ὀνόματα κατὰ τὸ Ε, καὶ ἔστω μεῖζον ὄνομα τὸ ΑΕ: αἱ ΑΕ, ΕΒ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι. γεγονέτω ὡς ἡ ΑΒ πρὸς τὴν ΓΔ, οὕτως ἡ ΑΕ πρὸς τὴν ΓΖ: καὶ λοιπὴ ἄρα ἡ ΕΒ πρὸς λοιπὴν τὴν ΖΔ ἐστιν, ὡς ἡ ΑΒ πρὸς τὴν ΓΔ. σύμμετρος δὲ ἡ ΑΒ τῇ ΓΔ μήκει. σύμμετρος ἄρα ἐστὶ καὶ ἡ μὲν ΑΕ τῇ ΓΖ, ἡ δὲ ΕΒ τῇ ΖΔ. καί εἰσι ῥηταὶ αἱ ΑΕ, ΕΒ: ῥηταὶ ἄρα εἰσὶ καὶ αἱ ΓΖ, ΖΔ. καὶ [ἐπεί] ἐστιν ὡς ἡ ΑΕ πρὸς ΓΖ, ἡ ΕΒ πρὸς ΖΔ. ἐναλλὰξ ἄρα ἐστὶν ὡς ἡ ΑΕ πρὸς ΕΒ, ἡ ΓΖ πρὸς ΖΔ. αἱ δὲ ΑΕ, ΕΒ δυνάμει μόνον [εἰσὶ] σύμμετροι: καὶ αἱ ΓΖ, ΖΔ ἄρα δυνάμει μόνον εἰσὶ σύμμετροι. καί εἰσι ῥηταί: ἐκ δύο ἄρα ὀνομάτων ἐστὶν ἡ ΓΔ. Λέγω δή, ὅτι τῇ τάξει ἐστὶν ἡ αὐτὴ τῇ ΑΒ. Ἡ γὰρ ΑΕ τῆς ΕΒ μεῖζον δύναται ἤτοι τῷ ἀπὸ συμμέτρου ἑαυτῇ ἢ τῷ ἀπὸ ἀσυμμέτρου. εἰ μὲν οὖν ἡ ΑΕ τῆς ΕΒ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ, καὶ ἡ ΓΖ τῆς ΖΔ μεῖζον δυνήσεται τῷ ἀπὸ συμμέτρου ἑαυτῇ. καὶ εἰ μὲν σύμμετρός ἐστιν ἡ ΑΕ τῇ ἐκκειμένῃ ῥητῇ, καὶ ἡ ΓΖ σύμμετρος αὐτῇ ἔσται, καὶ διὰ τοῦτο ἑκατέρα τῶν ΑΒ, ΓΔ ἐκ δύο ὀνομάτων ἐστὶ πρώτη, τουτέστι τῇ τάξει ἡ αὐτή. εἰ δὲ ἡ ΕΒ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ, καὶ ἡ ΖΔ σύμμετρός ἐστιν αὐτῇ, καὶ διὰ τοῦτο πάλιν τῇ τάξει ἡ αὐτὴ ἔσται τῇ ΑΒ: ἑκατέρα γὰρ αὐτῶν ἔσται ἐκ δύο ὀνομάτων δευτέρα. εἰ δὲ οὐδετέρα τῶν ΑΕ, ΕΒ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ, οὐδετέρα τῶν ΓΖ, ΖΔ σύμμετρος αὐτῇ ἔσται, καί ἐστιν ἑκατέρα τρίτη. εἰ δὲ ἡ ΑΕ τῆς ΕΒ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ, καὶ ἡ ΓΖ τῆς ΖΔ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ. καὶ εἰ μὲν ἡ ΑΕ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ, καὶ ἡ ΓΖ σύμμετρός ἐστιν αὐτῇ, καί ἐστιν ἑκατέρα τετάρτη. εἰ δὲ ἡ ΕΒ, καὶ ἡ ΖΔ, καὶ ἔσται ἑκατέρα πέμπτη. εἰ δὲ οὐδετέρα τῶν ΑΕ, ΕΒ, καὶ τῶν ΓΖ, ΖΔ οὐδετέρα σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ, καὶ ἔσται ἑκατέρα ἕκτη. Ὥστε ἡ τῇ ἐκ δύο ὀνομάτων μήκει σύμμετρος ἐκ δύο ὀνομάτων ἐστὶ καὶ τῇ τάξει ἡ αὐτή: ὅπερ ἔδει δεῖξαι. Ἡ τῇ ἐκ δύο μέσων μήκει σύμμετρος καὶ αὐτὴ ἐκ δύο μέσων ἐστὶ καὶ τῇ τάξει ἡ αὐτή. Ἔστω ἐκ δύο μέσων ἡ ΑΒ, καὶ τῇ ΑΒ σύμμετρος ἔστω μήκει ἡ ΓΔ: λέγω, ὅτι ἡ ΓΔ ἐκ δύο μέσων ἐστὶ καὶ τῇ τάξει ἡ αὐτὴ τῇ ΑΒ. Ἐπεὶ γὰρ ἐκ δύο μέσων ἐστὶν ἡ ΑΒ, διῃρήσθω εἰς τὰς μέσας κατὰ τὸ Ε: αἱ ΑΕ, ΕΒ ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι. καὶ γεγονέτω ὡς ἡ ΑΒ πρὸς ΓΔ, ἡ ΑΕ πρὸς ΓΖ: καὶ λοιπὴ ἄρα ἡ ΕΒ πρὸς λοιπὴν τὴν ΖΔ ἐστιν, ὡς ἡ ΑΒ πρὸς ΓΔ. σύμμετρος δὲ ἡ ΑΒ τῇ ΓΔ μήκει: σύμμετρος ἄρα καὶ ἑκατέρα τῶν ΑΕ, ΕΒ ἑκατέρᾳ τῶν ΓΖ, ΖΔ. μέσαι δὲ αἱ ΑΕ, ΕΒ: μέσαι ἄρα καὶ αἱ ΓΖ, ΖΔ. καὶ ἐπεί ἐστιν ὡς ἡ ΑΕ πρὸς ΕΒ, ἡ ΓΖ πρὸς ΖΔ, αἱ δὲ ΑΕ, ΕΒ δυνάμει μόνον σύμμετροί εἰσιν, καὶ αἱ ΓΖ, ΖΔ [ἄρα] δυνάμει μόνον σύμμετροί εἰσιν. ἐδείχθησαν δὲ καὶ μέσαι: ἡ ΓΔ ἄρα ἐκ δύο μέσων ἐστίν. Λέγω δή, ὅτι καὶ τῇ τάξει ἡ αὐτή ἐστι τῇ ΑΒ. Ἐπεὶ γάρ ἐστιν ὡς ἡ ΑΕ πρὸς ΕΒ, ἡ ΓΖ πρὸς ΖΔ, καὶ ὡς ἄρα τὸ ἀπὸ τῆς ΑΕ πρὸς τὸ ὑπὸ τῶν ΑΕΒ, οὕτως τὸ ἀπὸ τῆς ΓΖ πρὸς τὸ ὑπὸ τῶν ΓΖΔ: ἐναλλὰξ ὡς τὸ ἀπὸ τῆς ΑΕ πρὸς τὸ ἀπὸ τῆς ΓΖ, οὕτως τὸ ὑπὸ τῶν ΑΕΒ πρὸς τὸ ὑπὸ τῶν ΓΖΔ. σύμμετρον δὲ τὸ ἀπὸ τῆς ΑΕ τῷ ἀπὸ τῆς ΓΖ: σύμμετρον ἄρα καὶ τὸ ὑπὸ τῶν ΑΕΒ τῷ ὑπὸ τῶν ΓΖΔ. εἴτε οὖν ῥητόν ἐστι τὸ ὑπὸ τῶν ΑΕΒ, καὶ τὸ ὑπὸ τῶν ΓΖΔ ῥητόν ἐστιν [καὶ διὰ τοῦτό ἐστιν ἐκ δύο μέσων πρώτη]. εἴτε μέσον, μέσον, καί ἐστιν ἑκατέρα δευτέρα. Καὶ διὰ τοῦτο ἔσται ἡ ΓΔ τῇ ΑΒ τῇ τάξει ἡ αὐτή: ὅπερ ἔδει δεῖξαι. Ἡ τῇ μείζονι σύμμετρος καὶ αὐτὴ μείζων ἐστίν. Ἔστω μείζων ἡ ΑΒ, καὶ τῇ ΑΒ σύμμετρος ἔστω ἡ ΓΔ: λέγω, ὅτι ἡ ΓΔ μείζων ἐστίν. Διῃρήσθω ἡ ΑΒ κατὰ τὸ Ε: αἱ ΑΕ, ΕΒ ἄρα δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπ αὐτῶν τετραγώνων ῥητόν, τὸ δ ὑπ αὐτῶν μέσον: καὶ γεγονέτω τὰ αὐτὰ τοῖς πρότερον. καὶ ἐπεί ἐστιν ὡς ἡ ΑΒ πρὸς τὴν ΓΔ, οὕτως ἥ τε ΑΕ πρὸς τὴν ΓΖ καὶ ἡ ΕΒ πρὸς τὴν ΖΔ, καὶ ὡς ἄρα ἡ ΑΕ πρὸς τὴν ΓΖ, οὕτως ἡ ΕΒ πρὸς τὴν ΖΔ. σύμμετρος δὲ ἡ ΑΒ τῇ ΓΔ. σύμμετρος ἄρα καὶ ἑκατέρα τῶν ΑΕ, ΕΒ ἑκατέρᾳ τῶν ΓΖ, ΖΔ. καὶ ἐπεί ἐστιν ὡς ἡ ΑΕ πρὸς τὴν ΓΖ, οὕτως ἡ ΕΒ πρὸς τὴν ΖΔ, καὶ ἐναλλὰξ ὡς ἡ ΑΕ πρὸς ΕΒ, οὕτως ἡ ΓΖ πρὸς ΖΔ, καὶ συνθέντι ἄρα ἐστὶν ὡς ἡ ΑΒ πρὸς τὴν ΒΕ, οὕτως ἡ ΓΔ πρὸς τὴν ΔΖ: καὶ ὡς ἄρα τὸ ἀπὸ τῆς ΑΒ πρὸς τὸ ἀπὸ τῆς ΒΕ, οὕτως τὸ ἀπὸ τῆς ΓΔ πρὸς τὸ ἀπὸ τῆς ΔΖ. ὁμοίως δὴ δείξομεν, ὅτι καὶ ὡς τὸ ἀπὸ τῆς ΑΒ πρὸς τὸ ἀπὸ τῆς ΑΕ, οὕτως τὸ ἀπὸ τῆς ΓΔ πρὸς τὸ ἀπὸ τῆς ΓΖ. καὶ ὡς ἄρα τὸ ἀπὸ τῆς ΑΒ πρὸς τὰ ἀπὸ τῶν ΑΕ, ΕΒ, οὕτως τὸ ἀπὸ τῆς ΓΔ πρὸς τὰ ἀπὸ τῶν ΓΖ, ΖΔ: καὶ ἐναλλὰξ ἄρα ἐστὶν ὡς τὸ ἀπὸ τῆς ΑΒ πρὸς τὸ ἀπὸ τῆς ΓΔ, οὕτως τὰ ἀπὸ τῶν ΑΕ, ΕΒ πρὸς τὰ ἀπὸ τῶν ΓΖ, ΖΔ. σύμμετρον δὲ τὸ ἀπὸ τῆς ΑΒ τῷ ἀπὸ τῆς ΓΔ: σύμμετρα ἄρα καὶ τὰ ἀπὸ τῶν ΑΕ, ΕΒ τοῖς ἀπὸ τῶν ΓΖ, ΖΔ. καί ἐστι τὰ ἀπὸ τῶν ΑΕ, ΕΒ ἅμα ῥητόν, καὶ τὰ ἀπὸ τῶν ΓΖ, ΖΔ ἅμα ῥητόν ἐστιν. ὁμοίως δὲ καὶ τὸ δὶς ὑπὸ τῶν ΑΕ, ΕΒ σύμμετρόν ἐστι τῷ δὶς ὑπὸ τῶν ΓΖ, ΖΔ. καί ἐστι μέσον τὸ δὶς ὑπὸ τῶν ΑΕ, ΕΒ: μέσον ἄρα καὶ τὸ δὶς ὑπὸ τῶν ΓΖ, ΖΔ. αἱ ΓΖ, ΖΔ ἄρα δυνάμει ἀσύμμετροί εἰσι ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπ αὐτῶν τετραγώνων ἅμα ῥητόν, τὸ δὲ δὶς ὑπ αὐτῶν μέσον: ὅλη ἄρα ἡ ΓΔ ἄλογός ἐστιν ἡ καλουμένη μείζων. Ἡ ἄρα τῇ μείζονι σύμμετρος μείζων ἐστίν: ὅπερ ἔδει δεῖξαι. Ἡ τῇ ῥητὸν καὶ μέσον δυναμένῃ σύμμετρος [καὶ αὐτὴ] ῥητὸν καὶ μέσον δυναμένη ἐστίν. Ἔστω ῥητὸν καὶ μέσον δυναμένη ἡ ΑΒ, καὶ τῇ ΑΒ σύμμετρος ἔστω ἡ ΓΔ: δεικτέον, ὅτι καὶ ἡ ΓΔ ῥητὸν καὶ μέσον δυναμένη ἐστίν. Διῃρήσθω ἡ ΑΒ εἰς τὰς εὐθείας κατὰ τὸ Ε: αἱ ΑΕ, ΕΒ ἄρα δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπ αὐτῶν τετραγώνων μέσον, τὸ δ ὑπ αὐτῶν ῥητόν: καὶ τὰ αὐτὰ κατεσκευάσθω τοῖς πρότερον. ὁμοίως δὴ δείξομεν, ὅτι καὶ αἱ ΓΖ, ΖΔ δυνάμει εἰσὶν ἀσύμμετροι, καὶ σύμμετρον τὸ μὲν συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΕ, ΕΒ τῷ συγκειμένῳ ἐκ τῶν ἀπὸ τῶν ΓΖ, ΖΔ, τὸ δὲ ὑπὸ ΑΕ, ΕΒ τῷ ὑπὸ ΓΖ, ΖΔ: ὥστε καὶ τὸ [μὲν] συγκείμενον ἐκ τῶν ἀπὸ τῶν ΓΖ, ΖΔ τετραγώνων ἐστὶ μέσον, τὸ δ ὑπὸ τῶν ΓΖ, ΖΔ ῥητόν. Ῥητὸν ἄρα καὶ μέσον δυναμένη ἐστὶν ἡ ΓΔ: ὅπερ ἔδει δεῖξαι. Ἡ τῇ δύο μέσα δυναμένῃ σύμμετρος δύο μέσα δυναμένη ἐστίν. Ἔστω δύο μέσα δυναμένη ἡ ΑΒ, καὶ τῇ ΑΒ σύμμετρος ἡ ΓΔ: δεικτέον, ὅτι καὶ ἡ ΓΔ δύο μέσα δυναμένη ἐστίν. ἐπεὶ γὰρ δύο μέσα δυναμένη ἐστὶν ἡ ΑΒ, διῃρήσθω εἰς τὰς εὐθείας κατὰ τὸ Ε: αἱ ΑΕ, ΕΒ ἄρα δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τό τε συγκείμενον ἐκ τῶν ἀπ αὐτῶν [τετραγώνων] μέσον καὶ τὸ ὑπ αὐτῶν μέσον καὶ ἔτι ἀσύμμετρον τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΕ, ΕΒ τετραγώνων τῷ ὑπὸ τῶν ΑΕ, ΕΒ: καὶ κατεσκευάσθω τὰ αὐτὰ τοῖς πρότερον. ὁμοίως δὴ δείξομεν, ὅτι καὶ αἱ ΓΖ, ΖΔ δυνάμει εἰσὶν ἀσύμμετροι καὶ σύμμετρον τὸ μὲν συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΕ, ΕΒ τῷ συγκειμένῳ ἐκ τῶν ἀπὸ τῶν ΓΖ, ΖΔ, τὸ δὲ ὑπὸ τῶν ΑΕ, ΕΒ τῷ ὑπὸ τῶν ΓΖ, ΖΔ: ὥστε καὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΓΖ, ΖΔ τετραγώνων μέσον ἐστὶ καὶ τὸ ὑπὸ τῶν ΓΖ, ΖΔ μέσον καὶ ἔτι ἀσύμμετρον τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΓΖ, ΖΔ τετραγώνων τῷ ὑπὸ τῶν ΓΖ, ΖΔ. Ἡ ἄρα ΓΔ δύο μέσα δυναμένη ἐστίν: ὅπερ ἔδει δεῖξαι. Ῥητοῦ καὶ μέσου συντιθεμένου τέσσαρες ἄλογοι γίγνονται ἤτοι ἐκ δύο ὀνομάτων ἢ ἐκ δύο μέσων πρώτη ἢ μείζων ἢ ῥητὸν καὶ μέσον δυναμένη. Ἔστω ῥητὸν μὲν τὸ ΑΒ, μέσον δὲ τὸ ΓΔ: λέγω, ὅτι ἡ τὸ ΑΔ χωρίον δυναμένη ἤτοι ἐκ δύο ὀνομάτων ἐστὶν ἢ ἐκ δύο μέσων πρώτη ἢ μείζων ἢ ῥητὸν καὶ μέσον δυναμένη. Τὸ γὰρ ΑΒ τοῦ ΓΔ ἤτοι μεῖζόν ἐστιν ἢ ἔλασσον. ἔστω πρότερον μεῖζον: καὶ ἐκκείσθω ῥητὴ ἡ ΕΖ, καὶ παραβεβλήσθω παρὰ τὴν ΕΖ τῷ ΑΒ ἴσον τὸ ΕΗ πλάτος ποιοῦν τὴν ΕΘ: τῷ δὲ ΔΓ ἴσον παρὰ τὴν ΕΖ παραβεβλήσθω τὸ ΘΙ πλάτος ποιοῦν τὴν ΘΚ. καὶ ἐπεὶ ῥητόν ἐστι τὸ ΑΒ καί ἐστιν ῥητόν ἐστι τὸ ΑΒ καί ἐστιν ἴσον τῷ ΕΗ, ῥητὸν ἄρα καὶ τὸ ΕΗ. καὶ παρὰ [ῥητὴν] τὴν ΕΖ παραβέβληται πλάτος ποιοῦν τὴν ΕΘ: ἡ ΕΘ ἄρα ῥητή ἐστι καὶ σύμμετρος τῇ ΕΖ μήκει. πάλιν, ἐπεὶ μέσον ἐστὶ τὸ ΓΔ καί ἐστιν ἴσον τῷ ΘΙ, μέσον ἄρα ἐστὶ καὶ τὸ ΘΙ. καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν τὴν ΘΚ: ῥητὴ ἄρα ἐστὶν ἡ ΘΚ καὶ ἀσύμμετρος τῇ ΕΖ μήκει. καὶ ἐπεὶ μέσον ἐστὶ τὸ ΓΔ, ῥητὸν δὲ τὸ ΑΒ, ἀσύμμετρον ἄρα ἐστὶ τὸ ΑΒ τῷ ΓΔ: ὥστε καὶ τὸ ΕΗ ἀσύμμετρόν ἐστι τῷ ΘΙ. ὡς δὲ τὸ ΕΗ πρὸς τὸ ΘΙ, οὕτως ἐστὶν ἡ ΕΘ πρὸς τὴν ΘΚ: ἀσύμμετρος ἄρα ἐστὶ καὶ ἡ ΕΘ τῇ ΘΚ μήκει. καί εἰσιν ἀμφότεραι ῥηταί: αἱ ΕΘ, ΘΚ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἐκ δύο ἄρα ὀνομάτων ἐστὶν ἡ ΕΚ διῃρημένη κατὰ τὸ Θ. καὶ ἐπεὶ μεῖζόν ἐστι τὸ ΑΒ τοῦ ΓΔ, ἴσον δὲ τὸ μὲν ΑΒ τῷ ΕΗ, τὸ δὲ ΓΔ τῷ ΘΙ, μεῖζον ἄρα καὶ τὸ ΕΗ τοῦ ΘΙ: καὶ ἡ ΕΘ ἄρα μείζων ἐστὶ τῆς ΘΚ. ἤτοι οὖν ἡ ΕΘ τῆς ΘΚ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει ἢ τῷ ἀπὸ ἀσυμμέτρου. δυνάσθω πρότερον τῷ ἀπὸ συμμέτρου ἑαυτῇ. καί ἐστιν ἡ μείζων ἡ ΘΕ σύμμετρος τῇ ἐκκειμένῃ ῥητῇ τῇ ΕΖ: ἡ ἄρα ΕΚ ἐκ δύο ὀνομάτων ἐστὶ πρώτη. ῥητὴ δὲ ἡ ΕΖ: ἐὰν δὲ χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων πρώτης, ἡ τὸ χωρίον δυναμένη ἐκ δύο ὀνομάτων ἐστίν. ἡ ἄρα τὸ ΕΙ δυναμένη ἐκ δύο ὀνομάτων ἐστίν: ὥστε καὶ ἡ τὸ ΑΔ δυναμένη ἐκ δύο ὀνομάτων ἐστίν. ἀλλὰ δὴ δυνάσθω ἡ ΕΘ τῆς ΘΚ μεῖζον τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ: καί ἐστιν ἡ μείζων ἡ ΕΘ σύμμετρος τῇ ἐκκειμένῃ ῥητῇ τῇ ΕΖ μήκει: ἡ ἄρα ΕΚ ἐκ δύο ὀνομάτων ἐστὶ τετάρτη. ῥητὴ δὲ ἡ ΕΖ: ἐὰν δὲ χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων τετάρτης, ἡ τὸ χωρίον δυναμένη ἄλογός ἐστιν ἡ καλουμένη μείζων. ἡ ἄρα τὸ ΕΙ χωρίον δυναμένη μείζων ἐστίν: ὥστε καὶ ἡ τὸ ΑΔ δυναμένη μείζων ἐστίν. Ἀλλὰ δὴ ἔστω ἔλασσον τὸ ΑΒ τοῦ ΓΔ: καὶ τὸ ΕΗ ἄρα ἔλασσόν ἐστι τοῦ ΘΙ: ὥστε καὶ ἡ ΕΘ ἐλάσσων ἐστὶ τῆς ΘΚ. ἤτοι δὲ ἡ ΘΚ τῆς ΕΘ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ ἢ τῷ ἀπὸ ἀσυμμέτρου. δυνάσθω πρότερον τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει: καί ἐστιν ἡ ἐλάσσων ἡ ΕΘ σύμμετρος τῇ ἐκκειμένῃ ῥητῇ τῇ ΕΖ μήκει: ἡ ἄρα ΕΚ ἐκ δύο ὀνομάτων ἐστὶ δευτέρα. ῥητὴ δὲ ἡ ΕΖ: ἐὰν δὲ χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων δευτέρας, ἡ τὸ χωρίον δυναμένη ἐκ δύο μέσων ἐστὶ πρώτη. ἡ ἄρα τὸ ΕΙ χωρίον δυναμένη ἐκ δύο μέσων ἐστὶ πρώτη: ὥστε καὶ ἡ τὸ ΑΔ δυναμένη ἐκ δύο μέσων ἐστὶ πρώτη. ἀλλὰ δὴ ἡ ΘΚ τῆς ΘΕ μεῖζον δυνάσθω τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ. καί ἐστιν ἡ ἐλάσσων ἡ ΕΘ σύμμετρος τῇ ἐκκειμένῃ ῥητῇ τῇ ΕΖ: ἡ ἄρα ΕΚ ἐκ δύο ὀνομάτων ἐστὶ πέμπτη. ῥητὴ δὲ ἡ ΕΖ: ἐὰν δὲ χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων πέμπτης, ἡ τὸ χωρίον δυναμένη ῥητὸν καὶ μέσον δυναμένη ἐστίν. ἡ ἄρα τὸ ΕΙ χωρίον δυναμένη ῥητὸν καὶ μέσον δυναμένη ἐστίν: ὥστε καὶ ἡ τὸ ΑΔ χωρίον δυναμένη ῥητὸν καὶ μέσον δυναμένη ἐστίν. Ῥητοῦ ἄρα καὶ μέσου συντιθεμένου τέσσαρες ἄλογοι γίγνονται ἤτοι ἐκ δύο ὀνομάτων ἢ ἐκ δύο μέσων πρώτη ἢ μείζων ἢ ῥητὸν καὶ μέσον δυναμένη: ὅπερ ἔδει δεῖξαι. Δύο μέσων ἀσυμμέτρων ἀλλήλοις συντιθεμένων αἱ λοιπαὶ δύο ἄλογοι γίγνονται ἤτοι ἐκ δύο μέσων δευτέρα ἢ [ἡ] δύο μέσα δυναμένη. Συγκείσθω γὰρ δύο μέσα ἀσύμμετρα ἀλλήλοις τὰ ΑΒ, ΓΔ: λέγω, ὅτι ἡ τὸ ΑΔ χωρίον δυναμένη ἤτοι ἐκ δύο μέσων ἐστὶ δευτέρα ἢ δύο μέσα δυναμένη. Τὸ γὰρ ΑΒ τοῦ ΓΔ ἤτοι μεῖζόν ἐστιν ἢ ἔλασσον. ἔστω, εἰ τύχοι, πρότερον μεῖζον τὸ ΑΒ τοῦ ΓΔ: καὶ ἐκκείσθω ῥητὴ ἡ ΕΖ, καὶ τῷ μὲν ΑΒ ἴσον παρὰ τὴν ΕΖ παραβεβλήσθω τὸ ΕΗ πλάτος ποιοῦν τὴν ΕΘ, τῷ δὲ ΓΔ ἴσον τὸ ΘΙ πλάτος ποιοῦν τὴν ΘΚ. καὶ ἐπεὶ μέσον ἐστὶν ἑκάτερον τῶν ΑΒ, ΓΔ, μέσον ἄρα καὶ ἑκάτερον τῶν ΕΗ, ΘΙ. καὶ παρὰ ῥητὴν τὴν ΖΕ παράκειται πλάτος ποιοῦν τὰς ΕΘ, ΘΚ: ἑκατέρα ἄρα τῶν ΕΘ, ΘΚ ῥητή ἐστι καὶ ἀσύμμετρος τῇ ΕΖ μήκει. καὶ ἐπεὶ ἀσύμμετρόν ἐστι τὸ ΑΒ τῷ ΓΔ, καί ἐστιν ἴσον τὸ μὲν ΑΒ τῷ ΕΗ, τὸ δὲ ΓΔ τῷ ΘΙ, ἀσύμμετρον ἄρα ἐστὶ καὶ τὸ ΕΗ τῷ ΘΙ. ὡς δὲ τὸ ΕΗ πρὸς τὸ ΘΙ, οὕτως ἐστὶν ἡ ΕΘ πρὸς ΘΚ: ἀσύμμετρος ἄρα ἐστὶν ἡ ΕΘ τῇ ΘΚ μήκει. αἱ ΕΘ, ΘΚ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἐκ δύο ἄρα ὀνομάτων ἐστὶν ἡ ΕΚ. ἤτοι δὲ ἡ ΕΘ τῆς ΘΚ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ ἢ τῷ ἀπὸ ἀσυμμέτρου. δυνάσθω πρότερον τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει: καὶ οὐδετέρα τῶν ΕΘ, ΘΚ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΕΖ μήκει: ἡ ΕΚ ἄρα ἐκ δύο ὀνομάτων ἐστὶ τρίτη. ῥητὴ δὲ ἡ ΕΖ: ἐὰν δὲ χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων τρίτης, ἡ τὸ χωρίον δυναμένη ἐκ δύο μέσων ἐστὶ δευτέρα: ἡ ἄρα τὸ ΕΙ, τουτέστι τὸ ΑΔ, δυναμένη ἐκ δύο μέσων ἐστὶ δευτέρα. ἀλλὰ δὴ ἡ ΕΘ τῆς ΘΚ μεῖζον δυνάσθω τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει: καὶ ἀσύμμετρός ἐστιν ἑκατέρα τῶν ΕΘ, ΘΚ τῇ ΕΖ μήκει: ἡ ἄρα ΕΚ ἐκ δύο ὀνομάτων ἐστὶν ἕκτη. ἐὰν δὲ χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων ἕκτης, ἡ τὸ χωρίον δυναμένη ἡ δύο μέσα δυναμένη ἐστίν: ὥστε καὶ ἡ τὸ ΑΔ χωρίον δυναμένη ἡ δύο μέσα δυναμένη ἐστίν. [Ὁμοίως δὴ δείξομεν, ὅτι κἂν ἔλαττον ᾖ τὸ ΑΒ τοῦ ΓΔ, ἡ τὸ ΑΔ χωρίον δυναμένη ἢ ἐκ δύο μέσων δευτέρα ἐστὶν ἤτοι δύο μέσα δυναμένη]. Δύο ἄρα μέσων ἀσυμμέτρων ἀλλήλοις συντιθεμένων αἱ λοιπαὶ δύο ἄλογοι γίγνονται ἤτοι ἐκ δύο μέσων δευτέρα ἢ δύο μέσα δυναμένη. Ἡ ἐκ δύο ὀνομάτων καὶ αἱ μετ αὐτὴν ἄλογοι οὔτε τῇ μέσῃ οὔτε ἀλλήλαις εἰσὶν αἱ αὐταί. τὸ μὲν γὰρ ἀπὸ μέσης παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ ῥητὴν καὶ ἀσύμμετρον τῇ παρ ἣν παράκειται μήκει. τὸ δὲ ἀπὸ τῆς ἐκ δύο ὀνομάτων παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ τὴν ἐκ δύο ὀνομάτων πρώτην. τὸ δὲ ἀπὸ τῆς ἐκ δύο μέσων πρώτης παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ τὴν ἐκ δύο ὀνομάτων δευτέραν. τὸ δὲ ἀπὸ τῆς ἐκ δύο μέσων δευτέρας παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ τὴν ἐκ δύο ὀνομάτων τρίτην. τὸ δὲ ἀπὸ τῆς μείζονος παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ τὴν ἐκ δύο ὀνομάτων τετάρτην. τὸ δὲ ἀπὸ τῆς ῥητὸν καὶ μέσον δυναμένης παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ τὴν ἐκ δύο ὀνομάτων πέμπτην. τὸ δὲ ἀπὸ τῆς δύο μέσα δυναμένης παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ τὴν ἐκ δύο ὀνομάτων ἕκτην. τὰ δ εἰρημένα πλάτη διαφέρει τοῦ τε πρώτου καὶ ἀλλήλων, τοῦ μὲν πρώτου, ὅτι ῥητή ἐστιν, ἀλλήλων δέ, ὅτι τῇ τάξει οὐκ εἰσὶν αἱ αὐταί: ὥστε καὶ αὐταὶ αἱ ἄλογοι διαφέρουσιν ἀλλήλων. Εἂν ἀπὸ ῥητῆς ῥητὴ ἀφαιρεθῇ δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ, ἡ λοιπὴ ἄλογός ἐστιν: καλείσθω δὲ ἀποτομή. Ἀπὸ γὰρ ῥητῆς τῆς ΑΒ ῥητὴ ἀφῃρήσθω ἡ ΒΓ δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ: λέγω, ὅτι ἡ λοιπὴ ἡ ΑΓ ἄλογός ἐστιν ἡ καλουμένη ἀποτομή. Ἐπεὶ γὰρ ἀσύμμετρός ἐστιν ἡ ΑΒ τῇ ΒΓ μήκει, καί ἐστιν ὡς ἡ ΑΒ πρὸς τὴν ΒΓ, οὕτως τὸ ἀπὸ τῆς ΑΒ πρὸς τὸ ὑπὸ τῶν ΑΒ, ΒΓ, ἀσύμμετρον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΑΒ τῷ ὑπὸ τῶν ΑΒ, ΒΓ. ἀλλὰ τῷ μὲν ἀπὸ τῆς ΑΒ σύμμετρά ἐστι τὰ ἀπὸ τῶν ΑΒ, ΒΓ τετράγωνα, τῷ δὲ ὑπὸ τῶν ΑΒ, ΒΓ σύμμετρόν ἐστι τὸ δὶς ὑπὸ τῶν ΑΒ, ΒΓ. καὶ ἐπειδήπερ τὰ ἀπὸ τῶν ΑΒ, ΒΓ ἴσα ἐστὶ τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ μετὰ τοῦ ἀπὸ ΓΑ, καὶ λοιπῷ ἄρα τῷ ἀπὸ τῆς ΑΓ ἀσύμμετρά ἐστι τὰ ἀπὸ τῶν ΑΒ, ΒΓ. ῥητὰ δὲ τὰ ἀπὸ τῶν ΑΒ, ΒΓ: ἄλογος ἄρα ἐστὶν ἡ ΑΓ: καλείσθω δὲ ἀποτομή. ὅπερ ἔδει δεῖξαι. Εἂν ἀπὸ μέσης μέση ἀφαιρεθῇ δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ῥητὸν περιέχουσα, ἡ λοιπὴ ἄλογός ἐστιν: καλείσθω δὲ μέσης ἀποτομὴ πρώτη. Ἀπὸ γὰρ μέσης τῆς ΑΒ μέση ἀφῃρήσθω ἡ ΒΓ δυνάμει μόνον σύμμετρος οὖσα τῇ ΑΒ, μετὰ δὲ τῆς ΑΒ ῥητὸν ποιοῦσα τὸ ὑπὸ τῶν ΑΒ, ΒΓ: λέγω, ὅτι ἡ λοιπὴ ἡ ΑΓ ἄλογός ἐστιν: καλείσθω δὲ μέσης ἀποτομὴ πρώτη. Ἐπεὶ γὰρ αἱ ΑΒ, ΒΓ μέσαι εἰσίν, μέσα ἐστὶ καὶ τὰ ἀπὸ τῶν ΑΒ, ΒΓ. ῥητὸν δὲ τὸ δὶς ὑπὸ τῶν ΑΒ, ΒΓ: ἀσύμμετρα ἄρα τὰ ἀπὸ τῶν ΑΒ, ΒΓ τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ: καὶ λοιπῷ ἄρα τῷ ἀπὸ τῆς ΑΓ ἀσύμμετρόν ἐστι τὸ δὶς ὑπὸ τῶν ΑΒ, ΒΓ, ἐπεὶ κἂν τὸ ὅλον ἑνὶ αὐτῶν ἀσύμμετρον ᾖ, καὶ τὰ ἐξ ἀρχῆς μεγέθη ἀσύμμετρα ἔσται. ῥητὸν δὲ τὸ δὶς ὑπὸ τῶν ΑΒ, ΒΓ: ἄλογον ἄρα τὸ ἀπὸ τῆς ΑΓ: ἄλογος ἄρα ἐστὶν ἡ ΑΓ: καλείσθω δὲ μέσης ἀποτομὴ πρώτη. Εἂν ἀπὸ μέσης μέση ἀφαιρεθῇ δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλη, μετὰ δὲ τῆς ὅλης μέσον περιέχουσα, ἡ λοιπὴ ἄλογός ἐστιν: καλείσθω δὲ μέσης ἀποτομὴ δευτέρα. Ἀπὸ γὰρ μέσης τῆς ΑΒ μέση ἀφῃρήσθω ἡ ΓΒ δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ τῇ ΑΒ, μετὰ δὲ τῆς ὅλης τῆς ΑΒ μέσον περιέχουσα τὸ ὑπὸ τῶν ΑΒ, ΒΓ: λέγω, ὅτι ἡ λοιπὴ ἡ ΑΓ ἄλογός ἐστιν: καλείσθω δὲ μέσης ἀποτομὴ δευτέρα. Ἐκκείσθω γὰρ ῥητὴ ἡ ΔΙ, καὶ τοῖς μὲν ἀπὸ τῶν ΑΒ, ΒΓ ἴσον παρὰ τὴν ΔΙ παραβεβλήσθω τὸ ΔΕ πλάτος ποιοῦν τὴν ΔΗ, τῷ δὲ δὶς ὑπὸ τῶν ΑΒ, ΒΓ ἴσον παρὰ τὴν ΔΙ παραβεβλήσθω τὸ ΔΘ πλάτος ποιοῦν τὴν ΔΖ: λοιπὸν ἄρα τὸ ΖΕ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΑΓ. καὶ ἐπεὶ μέσα καὶ σύμμετρά ἐστι τὰ ἀπὸ τῶν ΑΒ, ΒΓ, μέσον ἄρα καὶ τὸ ΔΕ. καὶ παρὰ ῥητὴν τὴν ΔΙ παράκειται πλάτος ποιοῦν τὴν ΔΗ: ῥητὴ ἄρα ἐστὶν ἡ ΔΗ καὶ ἀσύμμετρος τῇ ΔΙ μήκει. πάλιν, ἐπεὶ μέσον ἐστὶ τὸ ὑπὸ τῶν ΑΒ, ΒΓ, καὶ τὸ δὶς ἄρα ὑπὸ τῶν ΑΒ, ΒΓ μέσον ἐστίν. καί ἐστιν ἴσον τῷ ΔΘ: καὶ τὸ ΔΘ ἄρα μέσον ἐστίν. καὶ παρὰ ῥητὴν τὴν ΔΙ παραβέβληται πλάτος ποιοῦν τὴν ΔΖ: ῥητὴ ἄρα ἐστὶν ἡ ΔΖ καὶ ἀσύμμετρος τῇ ΔΙ μήκει. καὶ ἐπεὶ αἱ ΑΒ, ΒΓ δυνάμει μόνον σύμμετροί εἰσιν, ἀσύμμετρος ἄρα ἐστὶν ἡ ΑΒ τῇ ΒΓ μήκει: ἀσύμμετρον ἄρα καὶ τὸ ἀπὸ τῆς ΑΒ τετράγωνον τῷ ὑπὸ τῶν ΑΒ, ΒΓ. ἀλλὰ τῷ μὲν ἀπὸ τῆς ΑΒ σύμμετρά ἐστι τὰ ἀπὸ τῶν ΑΒ, ΒΓ, τῷ δὲ ὑπὸ τῶν ΑΒ, ΒΓ σύμμετρόν ἐστι τὸ δὶς ὑπὸ τῶν ΑΒ, ΒΓ: ἀσύμμετρον ἄρα ἐστὶ τὸ δὶς ὑπὸ τῶν ΑΒ, ΒΓ τοῖς ἀπὸ τῶν ΑΒ, ΒΓ. ἴσον δὲ τοῖς μὲν ἀπὸ τῶν ΑΒ, ΒΓ τὸ ΔΕ, τῷ δὲ δὶς ὑπὸ τῶν ΑΒ, ΒΓ τὸ ΔΘ: ἀσύμμετρον ἄρα [ἐστὶ] τὸ ΔΕ τῷ ΔΘ. ὡς δὲ τὸ ΔΕ πρὸς τὸ ΔΘ, οὕτως ἡ ΗΔ πρὸς τὴν ΔΖ: ἀσύμμετρος ἄρα ἐστὶν ἡ ΗΔ τῇ ΔΖ. καί εἰσιν ἀμφότεραι ῥηταί: αἱ ἄρα ΗΔ, ΔΖ ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἡ ΖΗ ἄρα ἀποτομή ἐστιν. ῥητὴ δὲ ἡ ΔΙ: τὸ δὲ ὑπὸ ῥητῆς καὶ ἀλόγου περιεχόμενον ἄλογόν ἐστιν, καὶ ἡ δυναμένη αὐτὸ ἄλογός ἐστιν. καὶ δύναται τὸ ΖΕ ἡ ΑΓ: ἡ ΑΓ ἄρα ἄλογός ἐστιν: καλείσθω δὲ μέσης ἀποτομὴ δευτέρα. ὅπερ ἔδει δεῖξαι. Εἂν ἀπὸ εὐθείας εὐθεῖα ἀφαιρεθῇ δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ποιοῦσα τὰ μὲν ἀπ αὐτῶν ἅμα ῥητόν, τὸ δ ὑπ αὐτῶν μέσον, ἡ λοιπὴ ἄλογός ἐστιν: καλείσθω δὲ ἐλάσσων. Ἀπὸ γὰρ εὐθείας τῆς ΑΒ εὐθεῖα ἀφῃρήσθω ἡ ΒΓ δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ ποιοῦσα τὰ προκείμενα. λέγω, ὅτι ἡ λοιπὴ ἡ ΑΓ ἄλογός ἐστιν ἡ καλουμένη ἐλάσσων. Ἐπεὶ γὰρ τὸ μὲν συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ τετραγώνων ῥητόν ἐστιν, τὸ δὲ δὶς ὑπὸ τῶν ΑΒ, ΒΓ μέσον, ἀσύμμετρα ἄρα ἐστὶ τὰ ἀπὸ τῶν ΑΒ, ΒΓ τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ: καὶ ἀναστρέψαντι λοιπῷ τῷ ἀπὸ τῆς ΑΓ ἀσύμμετρά ἐστι τὰ ἀπὸ τῶν ΑΒ, ΒΓ. ῥητὰ δὲ τὰ ἀπὸ τῶν ΑΒ, ΒΓ. ἄλογον ἄρα τὸ ἀπὸ τῆς ΑΓ: ἄλογος ἄρα ἡ ΑΓ: καλείσθω δὲ ἐλάσσων. ὅπερ ἔδει δεῖξαι. Εἂν ἀπὸ εὐθείας εὐθεῖα ἀφαιρεθῇ δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ποιοῦσα τὸ μὲν συγκείμενον ἐκ τῶν ἀπ αὐτῶν τετραγώνων μέσον, τὸ δὲ δὶς ὑπ αὐτῶν ῥητόν, ἡ λοιπὴ ἄλογός ἐστιν: καλείσθω δὲ ἡ μετὰ ῥητοῦ μέσον τὸ ὅλον ποιοῦσα. Ἀπὸ γὰρ εὐθείας τῆς ΑΒ εὐθεῖα ἀφῃρήσθω ἡ ΒΓ δυνάμει ἀσύμμετρος οὖσα τῇ ΑΒ ποιοῦσα τὰ προκείμενα: λέγω, ὅτι ἡ λοιπὴ ἡ ΑΓ ἄλογός ἐστιν ἡ προειρημένη. Ἐπεὶ γὰρ τὸ μὲν συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ τετραγώνων μέσον ἐστίν, τὸ δὲ δὶς ὑπὸ τῶν ΑΒ, ΒΓ ῥητόν, ἀσύμμετρα ἄρα ἐστὶ τὰ ἀπὸ τῶν ΑΒ, ΒΓ τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ: καὶ λοιπὸν ἄρα τὸ ἀπὸ τῆς ΑΓ ἀσύμμετρόν ἐστι τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ. καί ἐστι τὸ δὶς ὑπὸ τῶν ΑΒ, ΒΓ ῥητόν: τὸ ἄρα ἀπὸ τῆς ΑΓ ἄλογόν ἐστιν: ἄλογος ἄρα ἐστὶν ἡ ΑΓ: καλείσθω δὲ ἡ μετὰ ῥητοῦ μέσον τὸ ὅλον ποιοῦσα. ὅπερ ἔδει δεῖξαι. Εἂν ἀπὸ εὐθείας εὐθεῖα ἀφαιρεθῇ δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ποιοῦσα τό τε συγκείμενον ἐκ τῶν ἀπ αὐτῶν τετραγώνων μέσον τό τε δὶς ὑπ αὐτῶν μέσον καὶ ἔτι τὰ ἀπ αὐτῶν τετράγωνα ἀσύμμετρα τῷ δὶς ὑπ αὐτῶν, ἡ λοιπὴ ἄλογός ἐστιν: καλείσθω δὲ ἡ μετὰ μέσου μέσον τὸ ὅλον ποιοῦσα. Ἀπὸ γὰρ εὐθείας τῆς ΑΒ εὐθεῖα ἀφῃρήσθω ἡ ΒΓ δυνάμει ἀσύμμετρος οὖσα τῇ ΑΒ ποιοῦσα τὰ προκείμενα: λέγω, ὅτι ἡ λοιπὴ ἡ ΑΓ ἄλογός ἐστιν ἡ καλουμένη ἡ μετὰ μέσου μέσον τὸ ὅλον ποιοῦσα. Ἐκκείσθω γὰρ ῥητὴ ἡ ΔΙ, καὶ τοῖς μὲν ἀπὸ τῶν ΑΒ, ΒΓ ἴσον παρὰ τὴν ΔΙ παραβεβλήσθω τὸ ΔΕ πλάτος ποιοῦν τὴν ΔΗ, τῷ δὲ δὶς ὑπὸ τῶν ΑΒ, ΒΓ ἴσον ἀφῃρήσθω τὸ ΔΘ [πλάτος ποιοῦν τὴν ΔΖ]. λοιπὸν ἄρα τὸ ΖΕ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΑΓ: ὥστε ἡ ΑΓ δύναται τὸ ΖΕ. καὶ ἐπεὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ τετραγώνων μέσον ἐστὶ καί ἐστιν ἴσον τῷ ΔΕ, μέσον ἄρα [ἐστὶ] τὸ ΔΕ. καὶ παρὰ ῥητὴν τὴν ΔΙ παράκειται πλάτος ποιοῦν τὴν ΔΗ: ῥητὴ ἄρα ἐστὶν ἡ ΔΗ καὶ ἀσύμμετρος τῇ ΔΙ μήκει. πάλιν, ἐπεὶ τὸ δὶς ὑπὸ τῶν ΑΒ, ΒΓ μέσον ἐστὶ καί ἐστιν ἴσον τῷ ΔΘ, τὸ ἄρα ΔΘ μέσον ἐστίν. καὶ παρὰ ῥητὴν τὴν ΔΙ παράκειται πλάτος ποιοῦν τὴν ΔΖ: ῥητὴ ἄρα ἐστὶ καὶ ἡ ΔΖ καὶ ἀσύμμετρος τῇ ΔΙ μήκει. καὶ ἐπεὶ ἀσύμμετρά ἐστι τὰ ἀπὸ τῶν ΑΒ, ΒΓ τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ, ἀσύμμετρον ἄρα καὶ τὸ ΔΕ τῷ ΔΘ. ὡς δὲ τὸ ΔΕ πρὸς τὸ ΔΘ, οὕτως ἐστὶ καὶ ἡ ΔΗ πρὸς τὴν ΔΖ: ἀσύμμετρος ἄρα ἡ ΔΗ τῇ ΔΖ. καί εἰσιν ἀμφότεραι ῥηταί: αἱ ΗΔ, ΔΖ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι. ἀποτομὴ ἄρα ἐστὶν ἡ ΖΗ: ῥητὴ δὲ ἡ ΖΘ. τὸ δὲ ὑπὸ ῥητῆς καὶ ἀποτομῆς περιεχόμενον [ὀρθογώνιον] ἄλογόν ἐστιν, καὶ ἡ δυναμένη αὐτὸ ἄλογός ἐστιν. καὶ δύναται τὸ ΖΕ ἡ ΑΓ: ἡ ΑΓ ἄρα ἄλογός ἐστιν: καλείσθω δὲ ἡ μετὰ μέσου μέσον τὸ ὅλον ποιοῦσα. ὅπερ ἔδει δεῖξαι. Τῇ ἀποτομῇ μία [μόνον] προσαρμόζει εὐθεῖα ῥητὴ δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ. Ἔστω ἀποτομὴ ἡ ΑΒ, προσαρμόζουσα δὲ αὐτῇ ἡ ΒΓ: αἱ ΑΓ, ΓΒ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: λέγω, ὅτι τῇ ΑΒ ἑτέρα οὐ προσαρμόζει ῥητὴ δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ. Εἰ γὰρ δυνατόν, προσαρμοζέτω ἡ ΒΔ: καὶ αἱ ΑΔ, ΔΒ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι. καὶ ἐπεί, ᾧ ὑπερέχει τὰ ἀπὸ τῶν ΑΔ, ΔΒ τοῦ δὶς ὑπὸ τῶν ΑΔ, ΔΒ, τούτῳ ὑπερέχει καὶ τὰ ἀπὸ τῶν ΑΓ, ΓΒ τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ: τῷ γὰρ αὐτῷ τῷ ἀπὸ τῆς ΑΒ ἀμφότερα ὑπερέχει: ἐναλλὰξ ἄρα, ᾧ ὑπερέχει τὰ ἀπὸ τῶν ΑΔ, ΔΒ τῶν ἀπὸ τῶν ΑΓ, ΓΒ, τούτῳ ὑπερέχει [καὶ] τὸ δὶς ὑπὸ τῶν ΑΔ, ΔΒ τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ. τὰ δὲ ἀπὸ τῶν ΑΔ, ΔΒ τῶν ἀπὸ τῶν ΑΓ, ΓΒ ὑπερέχει ῥητῷ: ῥητὰ γὰρ ἀμφότερα. καὶ τὸ δὶς ἄρα ὑπὸ τῶν ΑΔ, ΔΒ τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ ὑπερέχει ῥητῷ: ὅπερ ἐστὶν ἀδύνατον: μέσα γὰρ ἀμφότερα, μέσον δὲ μέσου οὐχ ὑπερέχει ῥητῷ. τῇ ἄρα ΑΒ ἑτέρα οὐ προσαρμόζει ῥητὴ δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ. Μία ἄρα μόνη τῇ ἀποτομῇ προσαρμόζει ῥητὴ δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ: ὅπερ ἔδει δεῖξαι. Τῇ μέσης ἀποτομῇ πρώτῃ μία μόνον προσαρμόζει εὐθεῖα μέση δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ῥητὸν περιέχουσα. Ἔστω γὰρ μέσης ἀποτομὴ πρώτη ἡ ΑΒ, καὶ τῇ ΑΒ προσαρμοζέτω ἡ ΒΓ: αἱ ΑΓ, ΓΒ ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι ῥητὸν περιέχουσαι τὸ ὑπὸ τῶν ΑΓ, ΓΒ: λέγω, ὅτι τῇ ΑΒ ἑτέρα οὐ προσαρμόζει μέση δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ῥητὸν περιέχουσα. Εἰ γὰρ δυνατόν, προσαρμοζέτω καὶ ἡ ΔΒ. αἱ ἄρα ΑΔ, ΔΒ μέσαι εἰσὶ δυνάμει μόνον σύμμετροι ῥητὸν περιέχουσαι τὸ ὑπὸ τῶν ΑΔ, ΔΒ. καὶ ἐπεί, ᾧ ὑπερέχει τὰ ἀπὸ τῶν ΑΔ, ΔΒ τοῦ δὶς ὑπὸ τῶν ΑΔ, ΔΒ, τούτῳ ὑπερέχει καὶ τὰ ἀπὸ τῶν ΑΓ, ΓΒ τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ: τῷ γὰρ αὐτῷ [πάλιν] ὑπερέχουσι τῷ ἀπὸ τῆς ΑΒ: ἐναλλὰξ ἄρα, ᾧ ὑπερέχει τὰ ἀπὸ τῶν ΑΔ, ΔΒ τῶν ἀπὸ τῶν ΑΓ, ΓΒ, τούτῳ ὑπερέχει καὶ τὸ δὶς ὑπὸ τῶν ΑΔ, ΔΒ τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ. τὸ δὲ δὶς ὑπὸ τῶν ΑΔ, ΔΒ τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ ὑπερέχει ῥητῷ: ῥητὰ γὰρ ἀμφότερα. καὶ τὰ ἀπὸ τῶν ΑΔ, ΔΒ ἄρα τῶν ἀπὸ τῶν ΑΓ, ΓΒ [τετραγώνων] ὑπερέχει ῥητῷ: ὅπερ ἐστὶν ἀδύνατον: μέσα γάρ ἐστιν ἀμφότερα, μέσον δὲ μέσου οὐχ ὑπερέχει ῥητῷ. Τῇ ἄρα μέσης ἀποτομῇ πρώτῃ μία μόνον προσαρμόζει εὐθεῖα μέση δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ῥητὸν περιέχουσα: ὅπερ ἔδει δεῖξαι. Τῇ μέσης ἀποτομῇ δευτέρᾳ μία μόνον προσαρμόζει εὐθεῖα μέση δυνάμει μόνον σύμμετρος τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης μέσον περιέχουσα. Ἔστω μέσης ἀποτομὴ δευτέρα ἡ ΑΒ καὶ τῇ ΑΒ προσαρμόζουσα ἡ ΒΓ: αἱ ἄρα ΑΓ, ΓΒ μέσαι εἰσὶ δυνάμει μόνον σύμμετροι μέσον περιέχουσαι τὸ ὑπὸ τῶν ΑΓ, ΓΒ: λέγω, ὅτι τῇ ΑΒ ἑτέρα οὐ προσαρμόσει εὐθεῖα μέση δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης μέσον περιέχουσα. Εἰ γὰρ δυνατόν, προσαρμοζέτω ἡ ΒΔ: καὶ αἱ ΑΔ, ΔΒ ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι μέσον περιέχουσαι τὸ ὑπὸ τῶν ΑΔ, ΔΒ. καὶ ἐκκείσθω ῥητὴ ἡ ΕΖ, καὶ τοῖς μὲν ἀπὸ τῶν ΑΓ, ΓΒ ἴσον παρὰ τὴν ΕΖ παραβεβλήσθω τὸ ΕΗ πλάτος ποιοῦν τὴν ΕΜ: τῷ δὲ δὶς ὑπὸ τῶν ΑΓ, ΓΒ ἴσον ἀφῃρήσθω τὸ ΘΗ πλάτος ποιοῦν τὴν ΘΜ: λοιπὸν ἄρα τὸ ΕΛ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΑΒ: ὥστε ἡ ΑΒ δύναται τὸ ΕΛ. πάλιν δὴ τοῖς ἀπὸ τῶν ΑΔ, ΔΒ ἴσον παρὰ τὴν ΕΖ παραβεβλήσθω τὸ ΕΙ πλάτος ποιοῦν τὴν ΕΝ: ἔστι δὲ καὶ τὸ ΕΛ ἴσον τῷ ἀπὸ τῆς ΑΒ τετραγώνῳ: λοιπὸν ἄρα τὸ ΘΙ ἴσον ἐστὶ τῷ δὶς ὑπὸ τῶν ΑΔ, ΔΒ. καὶ ἐπεὶ μέσαι εἰσὶν αἱ ΑΓ, ΓΒ, μέσα ἄρα ἐστὶ καὶ τὰ ἀπὸ τῶν ΑΓ, ΓΒ. καί ἐστιν ἴσα τῷ ΕΗ: μέσον ἄρα καὶ τὸ ΕΗ. καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν τὴν ΕΜ: ῥητὴ ἄρα ἐστὶν ἡ ΕΜ καὶ ἀσύμμετρος τῇ ΕΖ μήκει. πάλιν, ἐπεὶ μέσον ἐστὶ τὸ ὑπὸ τῶν ΑΓ, ΓΒ, καὶ τὸ δὶς ὑπὸ τῶν ΑΓ, ΓΒ μέσον ἐστίν. καί ἐστιν ἴσον τῷ ΘΗ: καὶ τὸ ΘΗ ἄρα μέσον ἐστίν. καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν τὴν ΘΜ: ῥητὴ ἄρα ἐστὶ καὶ ἡ ΘΜ καὶ ἀσύμμετρος τῇ ΕΖ μήκει. καὶ ἐπεὶ αἱ ΑΓ, ΓΒ δυνάμει μόνον σύμμετροί εἰσιν, ἀσύμμετρος ἄρα ἐστὶν ἡ ΑΓ τῇ ΓΒ μήκει. ὡς δὲ ἡ ΑΓ πρὸς τὴν ΓΒ, οὕτως ἐστὶ τὸ ἀπὸ τῆς ΑΓ πρὸς τὸ ὑπὸ τῶν ΑΓ, ΓΒ: ἀσύμμετρον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΑΓ τῷ ὑπὸ τῶν ΑΓ, ΓΒ. ἀλλὰ τῷ μὲν ἀπὸ τῆς ΑΓ σύμμετρά ἐστι τὰ ἀπὸ τῶν ΑΓ, ΓΒ, τῷ δὲ ὑπὸ τῶν ΑΓ, ΓΒ σύμμετρόν ἐστι τὸ δὶς ὑπὸ τῶν ΑΓ, ΓΒ: ἀσύμμετρα ἄρα ἐστὶ τὰ ἀπὸ τῶν ΑΓ, ΓΒ τῷ δὶς ὑπὸ τῶν ΑΓ, ΓΒ. καί ἐστι τοῖς μὲν ἀπὸ τῶν ΑΓ, ΓΒ ἴσον τὸ ΕΗ, τῷ δὲ δὶς ὑπὸ τῶν ΑΓ, ΓΒ ἴσον τὸ ΗΘ: ἀσύμμετρον ἄρα ἐστὶ τὸ ΕΗ τῷ ΘΗ. ὡς δὲ τὸ ΕΗ πρὸς τὸ ΘΗ, οὕτως ἐστὶν ἡ ΕΜ πρὸς τὴν ΘΜ: ἀσύμμετρος ἄρα ἐστὶν ἡ ΕΜ τῇ ΜΘ μήκει. καί εἰσιν ἀμφότεραι ῥηταί: αἱ ΕΜ, ΜΘ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἀποτομὴ ἄρα ἐστὶν ἡ ΕΘ, προσαρμόζουσα δὲ αὐτῇ ἡ ΘΜ. ὁμοίως δὴ δείξομεν, ὅτι καὶ ἡ ΘΝ αὐτῇ προσαρμόζει: τῇ ἄρα ἀποτομῇ ἄλλη καὶ ἄλλη προσαρμόζει εὐθεῖα δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ: ὅπερ ἐστὶν ἀδύνατον. Τῇ ἄρα μέσης ἀποτομῇ δευτέρᾳ μία μόνον προσαρμόζει εὐθεῖα μέση δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης μέσον περιέχουσα: ὅπερ ἔδει δεῖξαι. Τῇ ἐλάσσονι μία μόνον προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ ποιοῦσα μετὰ τῆς ὅλης τὸ μὲν ἐκ τῶν ἀπ αὐτῶν τετραγώνων ῥητόν, τὸ δὲ δὶς ὑπ αὐτῶν μέσον. Ἔστω ἡ ἐλάσσων ἡ ΑΒ, καὶ τῇ ΑΒ προσαρμόζουσα ἔστω ἡ ΒΓ: αἱ ἄρα ΑΓ, ΓΒ δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπ αὐτῶν τετραγώνων ῥητόν, τὸ δὲ δὶς ὑπ αὐτῶν μέσον: λέγω, ὅτι τῇ ΑΒ ἑτέρα εὐθεῖα οὐ προσαρμόσει τὰ αὐτὰ ποιοῦσα. Εἰ γὰρ δυνατόν, προσαρμοζέτω ἡ ΒΔ: καὶ αἱ ΑΔ, ΔΒ ἄρα δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὰ προειρημένα. καὶ ἐπεί, ᾧ ὑπερέχει τὰ ἀπὸ τῶν ΑΔ, ΔΒ τῶν ἀπὸ τῶν ΑΓ, ΓΒ, τούτῳ ὑπερέχει καὶ τὸ δὶς ὑπὸ τῶν ΑΔ, ΔΒ τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ, τὰ δὲ ἀπὸ τῶν ΑΔ, ΔΒ τετράγωνα τῶν ἀπὸ τῶν ΑΓ, ΓΒ τετραγώνων ὑπερέχει ῥητῷ: ῥητὰ γάρ ἐστιν ἀμφότερα: καὶ τὸ δὶς ὑπὸ τῶν ΑΔ, ΔΒ ἄρα τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ ὑπερέχει ῥητῷ: ὅπερ ἐστὶν ἀδύνατον: μέσα γάρ ἐστιν ἀμφότερα. Τῇ ἄρα ἐλάσσονι μία μόνον προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ καὶ ποιοῦσα τὰ μὲν ἀπ αὐτῶν τετράγωνα ἅμα ῥητόν, τὸ δὲ δὶς ὑπ αὐτῶν μέσον: ὅπερ ἔδει δεῖξαι. Τῇ μετὰ ῥητοῦ μέσον τὸ ὅλον ποιούσῃ μία μόνον προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ποιοῦσα τὸ μὲν συγκείμενον ἐκ τῶν ἀπ αὐτῶν τετραγώνων μέσον, τὸ δὲ δὶς ὑπ αὐτῶν ῥητόν. Ἔστω ἡ μετὰ ῥητοῦ μέσον τὸ ὅλον ποιοῦσα ἡ ΑΒ, καὶ τῇ ΑΒ προσαρμοζέτω ἡ ΒΓ: αἱ ἄρα ΑΓ, ΓΒ δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὰ προκείμενα: λέγω, ὅτι τῇ ΑΒ ἑτέρα οὐ προσαρμόσει τὰ αὐτὰ ποιοῦσα. Εἰ γὰρ δυνατόν, προσαρμοζέτω ἡ ΒΔ: καὶ αἱ ΑΔ, ΔΒ ἄρα εὐθεῖαι δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὰ προκείμενα. ἐπεὶ οὖν, ᾧ ὑπερέχει τὰ ἀπὸ τῶν ΑΔ, ΔΒ τῶν ἀπὸ τῶν ΑΓ, ΓΒ, τούτῳ ὑπερέχει καὶ τὸ δὶς ὑπὸ τῶν ΑΔ, ΔΒ τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ ἀκολούθως τοῖς πρὸ αὐτοῦ, τὸ δὲ δὶς ὑπὸ τῶν ΑΔ, ΔΒ τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ ὑπερέχει ῥητῷ: ῥητὰ γάρ ἐστιν ἀμφότερα: καὶ τὰ ἀπὸ τῶν ΑΔ, ΔΒ ἄρα τῶν ἀπὸ τῶν ΑΓ, ΓΒ ὑπερέχει ῥητῷ: ὅπερ ἐστὶν ἀδύνατον: μέσα γάρ ἐστιν ἀμφότερα. οὐκ ἄρα τῇ ΑΒ ἑτέρα προσαρμόσει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ποιοῦσα τὰ προειρημένα: μία ἄρα μόνον προσαρμόσει: ὅπερ ἔδει δεῖξαι. Τῇ μετὰ μέσου μέσον τὸ ὅλον ποιούσῃ μία μόνη προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ποιοῦσα τό τε συγκείμενον ἐκ τῶν ἀπ αὐτῶν τετραγώνων μέσον τό τε δὶς ὑπ αὐτῶν μέσον καὶ ἔτι ἀσύμμετρον τῷ συγκειμένῳ ἐκ τῶν ἀπ αὐτῶν. Ἔστω ἡ μετὰ μέσου μέσον τὸ ὅλον ποιοῦσα ἡ ΑΒ, προσαρμόζουσα δὲ αὐτῇ ἡ ΒΓ: αἱ ἄρα ΑΓ, ΓΒ δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὰ προειρημένα. λέγω, ὅτι τῇ ΑΒ ἑτέρα οὐ προσαρμόσει ποιοῦσα τὰ προειρημένα. Εἰ γὰρ δυνατόν, προσαρμοζέτω ἡ ΒΔ, ὥστε καὶ τὰς ΑΔ, ΔΒ δυνάμει ἀσυμμέτρους εἶναι ποιούσας τά τε ἀπὸ τῶν ΑΔ, ΔΒ τετράγωνα ἅμα μέσον καὶ τὸ δὶς ὑπὸ τῶν ΑΔ, ΔΒ μέσον καὶ ἔτι τὰ ἀπὸ τῶν ΑΔ, ΔΒ ἀσύμμετρα τῷ δὶς ὑπὸ τῶν ΑΔ, ΔΒ: καὶ ἐκκείσθω ῥητὴ ἡ ΕΖ, καὶ τοῖς μὲν ἀπὸ τῶν ΑΓ, ΓΒ ἴσον παρὰ τὴν ΕΖ παραβεβλήσθω τὸ ΕΗ πλάτος ποιοῦν τὴν ΕΜ, τῷ δὲ δὶς ὑπὸ τῶν ΑΓ, ΓΒ ἴσον παρὰ τὴν ΕΖ παραβεβλήσθω τὸ ΘΗ πλάτος ποιοῦν τὴν ΘΜ: λοιπὸν ἄρα τὸ ἀπὸ τῆς ΑΒ ἴσον ἐστὶ τῷ ΕΛ: ἡ ἄρα ΑΒ δύναται τὸ ΕΛ. πάλιν τοῖς ἀπὸ τῶν ΑΔ, ΔΒ ἴσον παρὰ τὴν ΕΖ παραβεβλήσθω τὸ ΕΙ πλάτος ποιοῦν τὴν ΕΝ. ἔστι δὲ καὶ τὸ ἀπὸ τῆς ΑΒ ἴσον τῷ ΕΛ: λοιπὸν ἄρα τὸ δὶς ὑπὸ τῶν ΑΔ, ΔΒ ἴσον [ἐστὶ] τῷ ΘΙ. καὶ ἐπεὶ μέσον ἐστὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΓ, ΓΒ καί ἐστιν ἴσον τῷ ΕΗ, μέσον ἄρα ἐστὶ καὶ τὸ ΕΗ. καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν τὴν ΕΜ: ῥητὴ ἄρα ἐστὶν ἡ ΕΜ καὶ ἀσύμμετρος τῇ ΕΖ μήκει. πάλιν, ἐπεὶ μέσον ἐστὶ τὸ δὶς ὑπὸ τῶν ΑΓ, ΓΒ καί ἐστιν ἴσον τῷ ΘΗ, μέσον ἄρα καὶ τὸ ΘΗ. καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν τὴν ΘΜ: ῥητὴ ἄρα ἐστὶν ἡ ΘΜ καὶ ἀσύμμετρος τῇ ΕΖ μήκει. καὶ ἐπεὶ ἀσύμμετρά ἐστι τὰ ἀπὸ τῶν ΑΓ, ΓΒ τῷ δὶς ὑπὸ τῶν ΑΓ, ΓΒ, ἀσύμμετρόν ἐστι καὶ τὸ ΕΗ τῷ ΘΗ: ἀσύμμετρος ἄρα ἐστὶ καὶ ἡ ΕΜ τῇ ΜΘ μήκει. καί εἰσιν ἀμφότεραι ῥηταί: αἱ ἄρα ΕΜ, ΜΘ ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἀποτομὴ ἄρα ἐστὶν ἡ ΕΘ, προσαρμόζουσα δὲ αὐτῇ ἡ ΘΜ. ὁμοίως δὴ δείξομεν, ὅτι ἡ ΕΘ πάλιν ἀποτομή ἐστιν, προσαρμόζουσα δὲ αὐτῇ ἡ ΘΝ. τῇ ἄρα ἀποτομῇ ἄλλη καὶ ἄλλη προσαρμόζει ῥητὴ δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ: ὅπερ ἐδείχθη ἀδύνατον. οὐκ ἄρα τῇ ΑΒ ἑτέρα προσαρμόσει εὐθεῖα. Τῇ ἄρα ΑΒ μία μόνον προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ποιοῦσα τά τε ἀπ αὐτῶν τετράγωνα ἅμα μέσον καὶ τὸ δὶς ὑπ αὐτῶν μέσον καὶ ἔτι τὰ ἀπ αὐτῶν τετράγωνα ἀσύμμετρα τῷ δὶς ὑπ αὐτῶν: ὅπερ ἔδει δεῖξαι.?
호흡부호 보기
강세부호 보기
장단부호 보기
작은 Iota 보기
모든 부호 보기