헬라어 문장 내 검색 Language

λέγεται δὲ καὶ ἄλλωσ συμβεβηκόσ, οἱο͂ν ὅσα ὑπάρχει ἑκάστῳ καθ’ αὑτὸ μὴ ἐν τῇ οὐσίᾳ ὄντα, οἱο͂ν τῷ τριγώνῳ τὸ δύο ὀρθὰσ ἔχειν.
(아리스토텔레스, 형이상학, Book 5 271:1)
Ἀλέξανδροσ δὲ ὁ πολίτησ μου οὗτοσ δ’ οὐ πρὸ πολλοῦ τετελεύτηκε δημοσίᾳ ἐπιδειξάμενοσ ἐν τῷ τριγώνῳ ἐπικαλουμένῳ ὀργάνῳ οὕτωσ ἐποίησε πάντασ Ῥωμαίουσ μουσομανεῖν ὡσ τοὺσ πολλοὺσ καὶ ἀπομνημονεύειν αὐτοῦ τὰ κρούσματα, μνημονεύει δὲ τοῦ τριγώνου τούτου καὶ Σοφοκλῆσ ἐν μὲν Μυσοῖσ οὕτωσ ·
(아테나이오스, The Deipnosophists, Book 4, book 4, chapter 821)
Εἂν δύο τρίγωνα τὰσ δύο πλευρὰσ [ταῖσ] δυσὶ πλευραῖσ ἴσασ ἔχῃ ἑκατέραν ἑκατέρᾳ καὶ τὴν γωνίαν τῇ γωνίᾳ ἴσην ἔχῃ τὴν ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένην, καὶ τὴν βάσιν τῇ βάσει ἴσην ἕξει, καὶ τὸ τρίγωνον τῷ τριγώνῳ ἴσον ἔσται, καὶ αἱ λοιπαὶ γωνίαι ταῖσ λοιπαῖσ γωνίαισ ἴσαι ἔσονται ἑκατέρα ἑκατέρᾳ, ὑφ’ ἃσ αἱ ἴσαι πλευραὶ ὑποτείνουσιν.
(유클리드, Elements, book 1, type Prop39)
λέγω, ὅτι καὶ βάσισ ἡ ΒΓ βάσει τῇ ΕΖ ἴση ἐστίν, καὶ τὸ ΑΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ ἴσον ἔσται, καὶ αἱ λοιπαὶ γωνίαι ταῖσ λοιπαῖσ γωνίαισ ἴσαι ἔσονται ἑκατέρα ἑκατέρᾳ, ὑφ’ ἃσ αἱ ἴσαι πλευραὶ ὑποτείνουσιν, ἡ μὲν ὑπὸ ΑΒΓ τῇ ὑπὸ ΔΕΖ, ἡ δὲ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΖΕ.
(유클리드, Elements, book 1, type Prop41)
Εἂν ἄρα δύο τρίγωνα τὰσ δύο πλευρὰσ [ταῖσ] δύο πλευραῖσ ἴσασ ἔχῃ ἑκατέραν ἑκατέρᾳ καὶ τὴν γωνίαν τῇ γωνίᾳ ἴσην ἔχῃ τὴν ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένην, καὶ τὴν βάσιν τῇ βάσει ἴσην ἕξει, καὶ τὸ τρίγωνον τῷ τριγώνῳ ἴσον ἔσται, καὶ αἱ λοιπαὶ γωνίαι ταῖσ λοιπαῖσ γωνίαισ ἴσαι ἔσονται ἑκατέρα ἑκατέρᾳ, ὑφ’ ἃσ αἱ ἴσαι πλευραὶ ὑποτείνουσιν·
(유클리드, Elements, book 1, type Prop51)
βάσισ ἄρα ἡ ΖΓ βάσει τῇ ΗΒ ἴση ἐστίν, καὶ τὸ ΑΖΓ τρίγωνον τῷ ΑΗΒ τριγώνῳ ἴσον ἔσται, καὶ αἱ λοιπαὶ γωνίαι ταῖσ λοιπαῖσ γωνίαισ ἴσαι ἔσονται ἑκατέρα ἑκατέρᾳ, ὑφ’ ἃσ αἱ ἴσαι πλευραὶ ὑποτείνουσιν, ἡ μὲν ὑπὸ ΑΓΖ τῇ ὑπὸ ΑΒΗ, ἡ δὲ ὑπὸ ΑΖΓ τῇ ὑπὸ ΑΗΒ.
(유클리드, Elements, book 1, type Prop59)
καὶ τὸ ΒΖΓ ἄρα τρίγωνον τῷ ΓΗΒ τριγώνῳ ἴσον ἔσται, καὶ αἱ λοιπαὶ γωνίαι ταῖσ λοιπαῖσ γωνίαισ ἴσαι ἔσονται ἑκατέρα ἑκατέρᾳ, ὑφ’ ἃσ αἱ ἴσαι πλευραὶ ὑποτείνουσιν·
(유클리드, Elements, book 1, type Prop64)
βάσισ ἄρα ἡ ΔΓ βάσει τῇ ΑΒ ἴση ἐστίν, καὶ τὸ ΔΒΓ τρίγωνον τῷ ΑΓΒ τριγώνῳ ἴσον ἔσται, τὸ ἔλασσον τῷ μείζονι·
(유클리드, Elements, book 1, type Prop78)
βάσισ ἄρα ἡ ΑΒ βάσει τῇ ΖΓ ἴση ἐστίν, καὶ τὸ ΑΒΕ τρίγωνον τῷ ΖΕΓ τριγώνῳ ἐστὶν ἴσον, καὶ αἱ λοιπαὶ γωνίαι ταῖσ λοιπαῖσ γωνίαισ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ, ὑφ’ ἃσ αἱ ἴσαι πλευραὶ ὑποτείνουσιν·
(유클리드, Elements, book 1, type Prop204)
βάσισ ἄρα ἡ ΗΓ βάσει τῇ ΔΖ ἴση ἐστίν, καὶ τὸ ΗΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ ἴσον ἐστίν, καὶ αἱ λοιπαὶ γωνίαι ταῖσ λοιπαῖσ γωνίαισ ἴσαι ἔσονται, ὑφ’ ἃσ αἱ ἴσαι πλευραὶ ὑποτείνουσιν·
(유클리드, Elements, book 1, type Prop344)
βάσισ ἄρα ἡ ΑΘ βάσει τῇ ΔΖ ἴση ἐστίν, καὶ τὸ ΑΒΘ τρίγωνον τῷ ΔΕΖ τριγώνῳ ἴσον ἐστίν, καὶ αἱ λοιπαὶ γωνίαι ταῖσ λοιπαῖσ γωνίαισ ἴσαι ἔσονται, ὑφ’ ἃσ αἱ ἴσαι πλευραὶ ὑποτείνουσιν·
(유클리드, Elements, book 1, type Prop361)
βάσισ ἄρα ἡ ΑΓ βάσει τῇ ΔΖ ἴση ἐστίν, καὶ τὸ ΑΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ ἴσον καὶ λοιπὴ γωνία ἡ ὑπὸ ΒΑΓ τῇ λοιπῇ γωνίᾳ τῇ ὑπὸ ΕΔΖ ἴση.
(유클리드, Elements, book 1, type Prop371)
βάσισ ἄρα ἡ ΑΓ βάσει τῇ ΒΔ ἐστιν ἴση, καὶ τὸ ΑΒΓ τρίγωνον τῷ ΒΓΔ τριγώνῳ ἴσον ἐστίν, καὶ αἱ λοιπαὶ γωνίαι ταῖσ λοιπαῖσ γωνίαισ ἴσαι ἔσονται ἑκατέρα ἑκατέρᾳ, ὑφ’ ἃσ αἱ ἴσαι πλευραὶ ὑποτείνουσιν·
(유클리드, Elements, book 1, type Prop464)
καὶ τὸ ΑΒΓ [ἄρα] τρίγωνον τῷ ΒΓΔ τριγώνῳ ἴσον ἐστίν.
(유클리드, Elements, book 1, type Prop485)
βάσισ ἄρα ἡ ΕΒ βάσει τῇ ΖΓ ἴση ἐστίν, καὶ τὸ ΕΑΒ τρίγωνον τῷ ΔΖΓ τριγώνῳ ἴσον ἔσται·
(유클리드, Elements, book 1, type Prop499)

SEARCH

MENU NAVIGATION